File size: 14,216 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
# Natural Language Toolkit: Logic
#
# Author:     Peter Wang
# Updated by: Dan Garrette <[email protected]>
#
# Copyright (C) 2001-2023 NLTK Project
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

"""

An implementation of the Hole Semantics model, following Blackburn and Bos,

Representation and Inference for Natural Language (CSLI, 2005).



The semantic representations are built by the grammar hole.fcfg.

This module contains driver code to read in sentences and parse them

according to a hole semantics grammar.



After parsing, the semantic representation is in the form of an underspecified

representation that is not easy to read.  We use a "plugging" algorithm to

convert that representation into first-order logic formulas.

"""

from functools import reduce

from nltk.parse import load_parser
from nltk.sem.logic import (
    AllExpression,
    AndExpression,
    ApplicationExpression,
    ExistsExpression,
    IffExpression,
    ImpExpression,
    LambdaExpression,
    NegatedExpression,
    OrExpression,
)
from nltk.sem.skolemize import skolemize

# Note that in this code there may be multiple types of trees being referred to:
#
# 1. parse trees
# 2. the underspecified representation
# 3. first-order logic formula trees
# 4. the search space when plugging (search tree)
#


class Constants:
    ALL = "ALL"
    EXISTS = "EXISTS"
    NOT = "NOT"
    AND = "AND"
    OR = "OR"
    IMP = "IMP"
    IFF = "IFF"
    PRED = "PRED"
    LEQ = "LEQ"
    HOLE = "HOLE"
    LABEL = "LABEL"

    MAP = {
        ALL: lambda v, e: AllExpression(v.variable, e),
        EXISTS: lambda v, e: ExistsExpression(v.variable, e),
        NOT: NegatedExpression,
        AND: AndExpression,
        OR: OrExpression,
        IMP: ImpExpression,
        IFF: IffExpression,
        PRED: ApplicationExpression,
    }


class HoleSemantics:
    """

    This class holds the broken-down components of a hole semantics, i.e. it

    extracts the holes, labels, logic formula fragments and constraints out of

    a big conjunction of such as produced by the hole semantics grammar.  It

    then provides some operations on the semantics dealing with holes, labels

    and finding legal ways to plug holes with labels.

    """

    def __init__(self, usr):
        """

        Constructor.  `usr' is a ``sem.Expression`` representing an

        Underspecified Representation Structure (USR).  A USR has the following

        special predicates:

        ALL(l,v,n),

        EXISTS(l,v,n),

        AND(l,n,n),

        OR(l,n,n),

        IMP(l,n,n),

        IFF(l,n,n),

        PRED(l,v,n,v[,v]*) where the brackets and star indicate zero or more repetitions,

        LEQ(n,n),

        HOLE(n),

        LABEL(n)

        where l is the label of the node described by the predicate, n is either

        a label or a hole, and v is a variable.

        """
        self.holes = set()
        self.labels = set()
        self.fragments = {}  # mapping of label -> formula fragment
        self.constraints = set()  # set of Constraints
        self._break_down(usr)
        self.top_most_labels = self._find_top_most_labels()
        self.top_hole = self._find_top_hole()

    def is_node(self, x):
        """

        Return true if x is a node (label or hole) in this semantic

        representation.

        """
        return x in (self.labels | self.holes)

    def _break_down(self, usr):
        """

        Extract holes, labels, formula fragments and constraints from the hole

        semantics underspecified representation (USR).

        """
        if isinstance(usr, AndExpression):
            self._break_down(usr.first)
            self._break_down(usr.second)
        elif isinstance(usr, ApplicationExpression):
            func, args = usr.uncurry()
            if func.variable.name == Constants.LEQ:
                self.constraints.add(Constraint(args[0], args[1]))
            elif func.variable.name == Constants.HOLE:
                self.holes.add(args[0])
            elif func.variable.name == Constants.LABEL:
                self.labels.add(args[0])
            else:
                label = args[0]
                assert label not in self.fragments
                self.fragments[label] = (func, args[1:])
        else:
            raise ValueError(usr.label())

    def _find_top_nodes(self, node_list):
        top_nodes = node_list.copy()
        for f in self.fragments.values():
            # the label is the first argument of the predicate
            args = f[1]
            for arg in args:
                if arg in node_list:
                    top_nodes.discard(arg)
        return top_nodes

    def _find_top_most_labels(self):
        """

        Return the set of labels which are not referenced directly as part of

        another formula fragment.  These will be the top-most labels for the

        subtree that they are part of.

        """
        return self._find_top_nodes(self.labels)

    def _find_top_hole(self):
        """

        Return the hole that will be the top of the formula tree.

        """
        top_holes = self._find_top_nodes(self.holes)
        assert len(top_holes) == 1  # it must be unique
        return top_holes.pop()

    def pluggings(self):
        """

        Calculate and return all the legal pluggings (mappings of labels to

        holes) of this semantics given the constraints.

        """
        record = []
        self._plug_nodes([(self.top_hole, [])], self.top_most_labels, {}, record)
        return record

    def _plug_nodes(self, queue, potential_labels, plug_acc, record):
        """

        Plug the nodes in `queue' with the labels in `potential_labels'.



        Each element of `queue' is a tuple of the node to plug and the list of

        ancestor holes from the root of the graph to that node.



        `potential_labels' is a set of the labels which are still available for

        plugging.



        `plug_acc' is the incomplete mapping of holes to labels made on the

        current branch of the search tree so far.



        `record' is a list of all the complete pluggings that we have found in

        total so far.  It is the only parameter that is destructively updated.

        """
        if queue != []:
            (node, ancestors) = queue[0]
            if node in self.holes:
                # The node is a hole, try to plug it.
                self._plug_hole(
                    node, ancestors, queue[1:], potential_labels, plug_acc, record
                )
            else:
                assert node in self.labels
                # The node is a label.  Replace it in the queue by the holes and
                # labels in the formula fragment named by that label.
                args = self.fragments[node][1]
                head = [(a, ancestors) for a in args if self.is_node(a)]
                self._plug_nodes(head + queue[1:], potential_labels, plug_acc, record)
        else:
            raise Exception("queue empty")

    def _plug_hole(self, hole, ancestors0, queue, potential_labels0, plug_acc0, record):
        """

        Try all possible ways of plugging a single hole.

        See _plug_nodes for the meanings of the parameters.

        """
        # Add the current hole we're trying to plug into the list of ancestors.
        assert hole not in ancestors0
        ancestors = [hole] + ancestors0

        # Try each potential label in this hole in turn.
        for l in potential_labels0:
            # Is the label valid in this hole?
            if self._violates_constraints(l, ancestors):
                continue

            plug_acc = plug_acc0.copy()
            plug_acc[hole] = l
            potential_labels = potential_labels0.copy()
            potential_labels.remove(l)

            if len(potential_labels) == 0:
                # No more potential labels.  That must mean all the holes have
                # been filled so we have found a legal plugging so remember it.
                #
                # Note that the queue might not be empty because there might
                # be labels on there that point to formula fragments with
                # no holes in them.  _sanity_check_plugging will make sure
                # all holes are filled.
                self._sanity_check_plugging(plug_acc, self.top_hole, [])
                record.append(plug_acc)
            else:
                # Recursively try to fill in the rest of the holes in the
                # queue.  The label we just plugged into the hole could have
                # holes of its own so at the end of the queue.  Putting it on
                # the end of the queue gives us a breadth-first search, so that
                # all the holes at level i of the formula tree are filled
                # before filling level i+1.
                # A depth-first search would work as well since the trees must
                # be finite but the bookkeeping would be harder.
                self._plug_nodes(
                    queue + [(l, ancestors)], potential_labels, plug_acc, record
                )

    def _violates_constraints(self, label, ancestors):
        """

        Return True if the `label' cannot be placed underneath the holes given

        by the set `ancestors' because it would violate the constraints imposed

        on it.

        """
        for c in self.constraints:
            if c.lhs == label:
                if c.rhs not in ancestors:
                    return True
        return False

    def _sanity_check_plugging(self, plugging, node, ancestors):
        """

        Make sure that a given plugging is legal.  We recursively go through

        each node and make sure that no constraints are violated.

        We also check that all holes have been filled.

        """
        if node in self.holes:
            ancestors = [node] + ancestors
            label = plugging[node]
        else:
            label = node
        assert label in self.labels
        for c in self.constraints:
            if c.lhs == label:
                assert c.rhs in ancestors
        args = self.fragments[label][1]
        for arg in args:
            if self.is_node(arg):
                self._sanity_check_plugging(plugging, arg, [label] + ancestors)

    def formula_tree(self, plugging):
        """

        Return the first-order logic formula tree for this underspecified

        representation using the plugging given.

        """
        return self._formula_tree(plugging, self.top_hole)

    def _formula_tree(self, plugging, node):
        if node in plugging:
            return self._formula_tree(plugging, plugging[node])
        elif node in self.fragments:
            pred, args = self.fragments[node]
            children = [self._formula_tree(plugging, arg) for arg in args]
            return reduce(Constants.MAP[pred.variable.name], children)
        else:
            return node


class Constraint:
    """

    This class represents a constraint of the form (L =< N),

    where L is a label and N is a node (a label or a hole).

    """

    def __init__(self, lhs, rhs):
        self.lhs = lhs
        self.rhs = rhs

    def __eq__(self, other):
        if self.__class__ == other.__class__:
            return self.lhs == other.lhs and self.rhs == other.rhs
        else:
            return False

    def __ne__(self, other):
        return not (self == other)

    def __hash__(self):
        return hash(repr(self))

    def __repr__(self):
        return f"({self.lhs} < {self.rhs})"


def hole_readings(sentence, grammar_filename=None, verbose=False):
    if not grammar_filename:
        grammar_filename = "grammars/sample_grammars/hole.fcfg"

    if verbose:
        print("Reading grammar file", grammar_filename)

    parser = load_parser(grammar_filename)

    # Parse the sentence.
    tokens = sentence.split()
    trees = list(parser.parse(tokens))
    if verbose:
        print("Got %d different parses" % len(trees))

    all_readings = []
    for tree in trees:
        # Get the semantic feature from the top of the parse tree.
        sem = tree.label()["SEM"].simplify()

        # Print the raw semantic representation.
        if verbose:
            print("Raw:       ", sem)

        # Skolemize away all quantifiers.  All variables become unique.
        while isinstance(sem, LambdaExpression):
            sem = sem.term
        skolemized = skolemize(sem)

        if verbose:
            print("Skolemized:", skolemized)

        # Break the hole semantics representation down into its components
        # i.e. holes, labels, formula fragments and constraints.
        hole_sem = HoleSemantics(skolemized)

        # Maybe show the details of the semantic representation.
        if verbose:
            print("Holes:       ", hole_sem.holes)
            print("Labels:      ", hole_sem.labels)
            print("Constraints: ", hole_sem.constraints)
            print("Top hole:    ", hole_sem.top_hole)
            print("Top labels:  ", hole_sem.top_most_labels)
            print("Fragments:")
            for l, f in hole_sem.fragments.items():
                print(f"\t{l}: {f}")

        # Find all the possible ways to plug the formulas together.
        pluggings = hole_sem.pluggings()

        # Build FOL formula trees using the pluggings.
        readings = list(map(hole_sem.formula_tree, pluggings))

        # Print out the formulas in a textual format.
        if verbose:
            for i, r in enumerate(readings):
                print()
                print("%d. %s" % (i, r))
            print()

        all_readings.extend(readings)

    return all_readings


if __name__ == "__main__":
    for r in hole_readings("a dog barks"):
        print(r)
    print()
    for r in hole_readings("every girl chases a dog"):
        print(r)