File size: 17,234 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# Natural Language Toolkit: Linear Logic
#
# Author: Dan Garrette <[email protected]>
#
# Copyright (C) 2001-2023 NLTK Project
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

from nltk.internals import Counter
from nltk.sem.logic import APP, LogicParser

_counter = Counter()


class Tokens:
    # Punctuation
    OPEN = "("
    CLOSE = ")"

    # Operations
    IMP = "-o"

    PUNCT = [OPEN, CLOSE]
    TOKENS = PUNCT + [IMP]


class LinearLogicParser(LogicParser):
    """A linear logic expression parser."""

    def __init__(self):
        LogicParser.__init__(self)

        self.operator_precedence = {APP: 1, Tokens.IMP: 2, None: 3}
        self.right_associated_operations += [Tokens.IMP]

    def get_all_symbols(self):
        return Tokens.TOKENS

    def handle(self, tok, context):
        if tok not in Tokens.TOKENS:
            return self.handle_variable(tok, context)
        elif tok == Tokens.OPEN:
            return self.handle_open(tok, context)

    def get_BooleanExpression_factory(self, tok):
        if tok == Tokens.IMP:
            return ImpExpression
        else:
            return None

    def make_BooleanExpression(self, factory, first, second):
        return factory(first, second)

    def attempt_ApplicationExpression(self, expression, context):
        """Attempt to make an application expression.  If the next tokens

        are an argument in parens, then the argument expression is a

        function being applied to the arguments.  Otherwise, return the

        argument expression."""
        if self.has_priority(APP, context):
            if self.inRange(0) and self.token(0) == Tokens.OPEN:
                self.token()  # swallow then open paren
                argument = self.process_next_expression(APP)
                self.assertNextToken(Tokens.CLOSE)
                expression = ApplicationExpression(expression, argument, None)
        return expression

    def make_VariableExpression(self, name):
        if name[0].isupper():
            return VariableExpression(name)
        else:
            return ConstantExpression(name)


class Expression:

    _linear_logic_parser = LinearLogicParser()

    @classmethod
    def fromstring(cls, s):
        return cls._linear_logic_parser.parse(s)

    def applyto(self, other, other_indices=None):
        return ApplicationExpression(self, other, other_indices)

    def __call__(self, other):
        return self.applyto(other)

    def __repr__(self):
        return f"<{self.__class__.__name__} {self}>"


class AtomicExpression(Expression):
    def __init__(self, name, dependencies=None):
        """

        :param name: str for the constant name

        :param dependencies: list of int for the indices on which this atom is dependent

        """
        assert isinstance(name, str)
        self.name = name

        if not dependencies:
            dependencies = []
        self.dependencies = dependencies

    def simplify(self, bindings=None):
        """

        If 'self' is bound by 'bindings', return the atomic to which it is bound.

        Otherwise, return self.



        :param bindings: ``BindingDict`` A dictionary of bindings used to simplify

        :return: ``AtomicExpression``

        """
        if bindings and self in bindings:
            return bindings[self]
        else:
            return self

    def compile_pos(self, index_counter, glueFormulaFactory):
        """

        From Iddo Lev's PhD Dissertation p108-109



        :param index_counter: ``Counter`` for unique indices

        :param glueFormulaFactory: ``GlueFormula`` for creating new glue formulas

        :return: (``Expression``,set) for the compiled linear logic and any newly created glue formulas

        """
        self.dependencies = []
        return (self, [])

    def compile_neg(self, index_counter, glueFormulaFactory):
        """

        From Iddo Lev's PhD Dissertation p108-109



        :param index_counter: ``Counter`` for unique indices

        :param glueFormulaFactory: ``GlueFormula`` for creating new glue formulas

        :return: (``Expression``,set) for the compiled linear logic and any newly created glue formulas

        """
        self.dependencies = []
        return (self, [])

    def initialize_labels(self, fstruct):
        self.name = fstruct.initialize_label(self.name.lower())

    def __eq__(self, other):
        return self.__class__ == other.__class__ and self.name == other.name

    def __ne__(self, other):
        return not self == other

    def __str__(self):
        accum = self.name
        if self.dependencies:
            accum += "%s" % self.dependencies
        return accum

    def __hash__(self):
        return hash(self.name)


class ConstantExpression(AtomicExpression):
    def unify(self, other, bindings):
        """

        If 'other' is a constant, then it must be equal to 'self'.  If 'other' is a variable,

        then it must not be bound to anything other than 'self'.



        :param other: ``Expression``

        :param bindings: ``BindingDict`` A dictionary of all current bindings

        :return: ``BindingDict`` A new combined dictionary of of 'bindings' and any new binding

        :raise UnificationException: If 'self' and 'other' cannot be unified in the context of 'bindings'

        """
        assert isinstance(other, Expression)
        if isinstance(other, VariableExpression):
            try:
                return bindings + BindingDict([(other, self)])
            except VariableBindingException:
                pass
        elif self == other:
            return bindings
        raise UnificationException(self, other, bindings)


class VariableExpression(AtomicExpression):
    def unify(self, other, bindings):
        """

        'self' must not be bound to anything other than 'other'.



        :param other: ``Expression``

        :param bindings: ``BindingDict`` A dictionary of all current bindings

        :return: ``BindingDict`` A new combined dictionary of of 'bindings' and the new binding

        :raise UnificationException: If 'self' and 'other' cannot be unified in the context of 'bindings'

        """
        assert isinstance(other, Expression)
        try:
            if self == other:
                return bindings
            else:
                return bindings + BindingDict([(self, other)])
        except VariableBindingException as e:
            raise UnificationException(self, other, bindings) from e


class ImpExpression(Expression):
    def __init__(self, antecedent, consequent):
        """

        :param antecedent: ``Expression`` for the antecedent

        :param consequent: ``Expression`` for the consequent

        """
        assert isinstance(antecedent, Expression)
        assert isinstance(consequent, Expression)
        self.antecedent = antecedent
        self.consequent = consequent

    def simplify(self, bindings=None):
        return self.__class__(
            self.antecedent.simplify(bindings), self.consequent.simplify(bindings)
        )

    def unify(self, other, bindings):
        """

        Both the antecedent and consequent of 'self' and 'other' must unify.



        :param other: ``ImpExpression``

        :param bindings: ``BindingDict`` A dictionary of all current bindings

        :return: ``BindingDict`` A new combined dictionary of of 'bindings' and any new bindings

        :raise UnificationException: If 'self' and 'other' cannot be unified in the context of 'bindings'

        """
        assert isinstance(other, ImpExpression)
        try:
            return (
                bindings
                + self.antecedent.unify(other.antecedent, bindings)
                + self.consequent.unify(other.consequent, bindings)
            )
        except VariableBindingException as e:
            raise UnificationException(self, other, bindings) from e

    def compile_pos(self, index_counter, glueFormulaFactory):
        """

        From Iddo Lev's PhD Dissertation p108-109



        :param index_counter: ``Counter`` for unique indices

        :param glueFormulaFactory: ``GlueFormula`` for creating new glue formulas

        :return: (``Expression``,set) for the compiled linear logic and any newly created glue formulas

        """
        (a, a_new) = self.antecedent.compile_neg(index_counter, glueFormulaFactory)
        (c, c_new) = self.consequent.compile_pos(index_counter, glueFormulaFactory)
        return (ImpExpression(a, c), a_new + c_new)

    def compile_neg(self, index_counter, glueFormulaFactory):
        """

        From Iddo Lev's PhD Dissertation p108-109



        :param index_counter: ``Counter`` for unique indices

        :param glueFormulaFactory: ``GlueFormula`` for creating new glue formulas

        :return: (``Expression``,list of ``GlueFormula``) for the compiled linear logic and any newly created glue formulas

        """
        (a, a_new) = self.antecedent.compile_pos(index_counter, glueFormulaFactory)
        (c, c_new) = self.consequent.compile_neg(index_counter, glueFormulaFactory)
        fresh_index = index_counter.get()
        c.dependencies.append(fresh_index)
        new_v = glueFormulaFactory("v%s" % fresh_index, a, {fresh_index})
        return (c, a_new + c_new + [new_v])

    def initialize_labels(self, fstruct):
        self.antecedent.initialize_labels(fstruct)
        self.consequent.initialize_labels(fstruct)

    def __eq__(self, other):
        return (
            self.__class__ == other.__class__
            and self.antecedent == other.antecedent
            and self.consequent == other.consequent
        )

    def __ne__(self, other):
        return not self == other

    def __str__(self):
        return "{}{} {} {}{}".format(
            Tokens.OPEN,
            self.antecedent,
            Tokens.IMP,
            self.consequent,
            Tokens.CLOSE,
        )

    def __hash__(self):
        return hash(f"{hash(self.antecedent)}{Tokens.IMP}{hash(self.consequent)}")


class ApplicationExpression(Expression):
    def __init__(self, function, argument, argument_indices=None):
        """

        :param function: ``Expression`` for the function

        :param argument: ``Expression`` for the argument

        :param argument_indices: set for the indices of the glue formula from which the argument came

        :raise LinearLogicApplicationException: If 'function' cannot be applied to 'argument' given 'argument_indices'.

        """
        function_simp = function.simplify()
        argument_simp = argument.simplify()

        assert isinstance(function_simp, ImpExpression)
        assert isinstance(argument_simp, Expression)

        bindings = BindingDict()

        try:
            if isinstance(function, ApplicationExpression):
                bindings += function.bindings
            if isinstance(argument, ApplicationExpression):
                bindings += argument.bindings
            bindings += function_simp.antecedent.unify(argument_simp, bindings)
        except UnificationException as e:
            raise LinearLogicApplicationException(
                f"Cannot apply {function_simp} to {argument_simp}. {e}"
            ) from e

        # If you are running it on complied premises, more conditions apply
        if argument_indices:
            # A.dependencies of (A -o (B -o C)) must be a proper subset of argument_indices
            if not set(function_simp.antecedent.dependencies) < argument_indices:
                raise LinearLogicApplicationException(
                    "Dependencies unfulfilled when attempting to apply Linear Logic formula %s to %s"
                    % (function_simp, argument_simp)
                )
            if set(function_simp.antecedent.dependencies) == argument_indices:
                raise LinearLogicApplicationException(
                    "Dependencies not a proper subset of indices when attempting to apply Linear Logic formula %s to %s"
                    % (function_simp, argument_simp)
                )

        self.function = function
        self.argument = argument
        self.bindings = bindings

    def simplify(self, bindings=None):
        """

        Since function is an implication, return its consequent.  There should be

        no need to check that the application is valid since the checking is done

        by the constructor.



        :param bindings: ``BindingDict`` A dictionary of bindings used to simplify

        :return: ``Expression``

        """
        if not bindings:
            bindings = self.bindings

        return self.function.simplify(bindings).consequent

    def __eq__(self, other):
        return (
            self.__class__ == other.__class__
            and self.function == other.function
            and self.argument == other.argument
        )

    def __ne__(self, other):
        return not self == other

    def __str__(self):
        return "%s" % self.function + Tokens.OPEN + "%s" % self.argument + Tokens.CLOSE

    def __hash__(self):
        return hash(f"{hash(self.antecedent)}{Tokens.OPEN}{hash(self.consequent)}")


class BindingDict:
    def __init__(self, bindings=None):
        """

        :param bindings:

            list [(``VariableExpression``, ``AtomicExpression``)] to initialize the dictionary

            dict {``VariableExpression``: ``AtomicExpression``} to initialize the dictionary

        """
        self.d = {}

        if isinstance(bindings, dict):
            bindings = bindings.items()

        if bindings:
            for (v, b) in bindings:
                self[v] = b

    def __setitem__(self, variable, binding):
        """

        A binding is consistent with the dict if its variable is not already bound, OR if its

        variable is already bound to its argument.



        :param variable: ``VariableExpression`` The variable bind

        :param binding: ``Expression`` The expression to which 'variable' should be bound

        :raise VariableBindingException: If the variable cannot be bound in this dictionary

        """
        assert isinstance(variable, VariableExpression)
        assert isinstance(binding, Expression)

        assert variable != binding

        existing = self.d.get(variable, None)

        if not existing or binding == existing:
            self.d[variable] = binding
        else:
            raise VariableBindingException(
                "Variable %s already bound to another value" % (variable)
            )

    def __getitem__(self, variable):
        """

        Return the expression to which 'variable' is bound

        """
        assert isinstance(variable, VariableExpression)

        intermediate = self.d[variable]
        while intermediate:
            try:
                intermediate = self.d[intermediate]
            except KeyError:
                return intermediate

    def __contains__(self, item):
        return item in self.d

    def __add__(self, other):
        """

        :param other: ``BindingDict`` The dict with which to combine self

        :return: ``BindingDict`` A new dict containing all the elements of both parameters

        :raise VariableBindingException: If the parameter dictionaries are not consistent with each other

        """
        try:
            combined = BindingDict()
            for v in self.d:
                combined[v] = self.d[v]
            for v in other.d:
                combined[v] = other.d[v]
            return combined
        except VariableBindingException as e:
            raise VariableBindingException(
                "Attempting to add two contradicting"
                " VariableBindingsLists: %s, %s" % (self, other)
            ) from e

    def __ne__(self, other):
        return not self == other

    def __eq__(self, other):
        if not isinstance(other, BindingDict):
            raise TypeError
        return self.d == other.d

    def __str__(self):
        return "{" + ", ".join(f"{v}: {self.d[v]}" for v in sorted(self.d.keys())) + "}"

    def __repr__(self):
        return "BindingDict: %s" % self


class VariableBindingException(Exception):
    pass


class UnificationException(Exception):
    def __init__(self, a, b, bindings):
        Exception.__init__(self, f"Cannot unify {a} with {b} given {bindings}")


class LinearLogicApplicationException(Exception):
    pass


def demo():
    lexpr = Expression.fromstring

    print(lexpr(r"f"))
    print(lexpr(r"(g -o f)"))
    print(lexpr(r"((g -o G) -o G)"))
    print(lexpr(r"g -o h -o f"))
    print(lexpr(r"(g -o f)(g)").simplify())
    print(lexpr(r"(H -o f)(g)").simplify())
    print(lexpr(r"((g -o G) -o G)((g -o f))").simplify())
    print(lexpr(r"(H -o H)((g -o f))").simplify())


if __name__ == "__main__":
    demo()