File size: 11,283 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
.. Copyright (C) 2001-2023 NLTK Project
.. For license information, see LICENSE.TXT


=======
Metrics

=======


-----
Setup

-----

    >>> import pytest
    >>> _ = pytest.importorskip("numpy")


The `nltk.metrics` package provides a variety of *evaluation measures*
which can be used for a wide variety of NLP tasks.

   >>> from nltk.metrics import *


------------------
Standard IR Scores

------------------

We can use standard scores from information retrieval to test the
performance of taggers, chunkers, etc.

    >>> reference = 'DET NN VB DET JJ NN NN IN DET NN'.split()
    >>> test    = 'DET VB VB DET NN NN NN IN DET NN'.split()
    >>> print(accuracy(reference, test))
    0.8


The following measures apply to sets:

    >>> reference_set = set(reference)
    >>> test_set = set(test)
    >>> precision(reference_set, test_set)
    1.0
    >>> print(recall(reference_set, test_set))
    0.8
    >>> print(f_measure(reference_set, test_set))
    0.88888888888...

Measuring the likelihood of the data, given probability distributions:

    >>> from nltk import FreqDist, MLEProbDist
    >>> pdist1 = MLEProbDist(FreqDist("aldjfalskfjaldsf"))
    >>> pdist2 = MLEProbDist(FreqDist("aldjfalssjjlldss"))
    >>> print(log_likelihood(['a', 'd'], [pdist1, pdist2]))
    -2.7075187496...



----------------
Distance Metrics

----------------

String edit distance (Levenshtein):

    >>> edit_distance("rain", "shine")
    3
    >>> edit_distance_align("shine", "shine")
    [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5)]
    >>> edit_distance_align("rain", "brainy")
    [(0, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (4, 6)]
    >>> edit_distance_align("", "brainy")
    [(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6)]
    >>> edit_distance_align("", "")
    [(0, 0)]

Other distance measures:

    >>> s1 = set([1,2,3,4])
    >>> s2 = set([3,4,5])
    >>> binary_distance(s1, s2)
    1.0
    >>> print(jaccard_distance(s1, s2))
    0.6
    >>> print(masi_distance(s1, s2))
    0.868


----------------------
Miscellaneous Measures

----------------------

Rank Correlation works with two dictionaries mapping keys to ranks.
The dictionaries should have the same set of keys.

    >>> spearman_correlation({'e':1, 't':2, 'a':3}, {'e':1, 'a':2, 't':3})
    0.5

Windowdiff uses a sliding window in comparing two segmentations of the same input (e.g. tokenizations, chunkings).
Segmentations are represented using strings of zeros and ones.

    >>> s1 = "000100000010"
    >>> s2 = "000010000100"
    >>> s3 = "100000010000"
    >>> s4 = "000000000000"
    >>> s5 = "111111111111"
    >>> windowdiff(s1, s1, 3)
    0.0
    >>> abs(windowdiff(s1, s2, 3) - 0.3)  < 1e-6  # windowdiff(s1, s2, 3) == 0.3
    True
    >>> abs(windowdiff(s2, s3, 3) - 0.8)  < 1e-6  # windowdiff(s2, s3, 3) == 0.8
    True
    >>> windowdiff(s1, s4, 3)
    0.5
    >>> windowdiff(s1, s5, 3)
    1.0


----------------
Confusion Matrix

----------------

    >>> reference = 'This is the reference data.  Testing 123.  aoaeoeoe'
    >>> test =      'Thos iz_the rifirenci data.  Testeng 123.  aoaeoeoe'
    >>> print(ConfusionMatrix(reference, test))
      |   . 1 2 3 T _ a c d e f g h i n o r s t z |
    --+-------------------------------------------+
      |<8>. . . . . 1 . . . . . . . . . . . . . . |
    . | .<2>. . . . . . . . . . . . . . . . . . . |
    1 | . .<1>. . . . . . . . . . . . . . . . . . |
    2 | . . .<1>. . . . . . . . . . . . . . . . . |
    3 | . . . .<1>. . . . . . . . . . . . . . . . |
    T | . . . . .<2>. . . . . . . . . . . . . . . |
    _ | . . . . . .<.>. . . . . . . . . . . . . . |
    a | . . . . . . .<4>. . . . . . . . . . . . . |
    c | . . . . . . . .<1>. . . . . . . . . . . . |
    d | . . . . . . . . .<1>. . . . . . . . . . . |
    e | . . . . . . . . . .<6>. . . 3 . . . . . . |
    f | . . . . . . . . . . .<1>. . . . . . . . . |
    g | . . . . . . . . . . . .<1>. . . . . . . . |
    h | . . . . . . . . . . . . .<2>. . . . . . . |
    i | . . . . . . . . . . 1 . . .<1>. 1 . . . . |
    n | . . . . . . . . . . . . . . .<2>. . . . . |
    o | . . . . . . . . . . . . . . . .<3>. . . . |
    r | . . . . . . . . . . . . . . . . .<2>. . . |
    s | . . . . . . . . . . . . . . . . . .<2>. 1 |
    t | . . . . . . . . . . . . . . . . . . .<3>. |
    z | . . . . . . . . . . . . . . . . . . . .<.>|
    --+-------------------------------------------+
    (row = reference; col = test)
    <BLANKLINE>

    >>> cm = ConfusionMatrix(reference, test)
    >>> print(cm.pretty_format(sort_by_count=True))
      |   e a i o s t . T h n r 1 2 3 c d f g _ z |
    --+-------------------------------------------+
      |<8>. . . . . . . . . . . . . . . . . . 1 . |
    e | .<6>. 3 . . . . . . . . . . . . . . . . . |
    a | . .<4>. . . . . . . . . . . . . . . . . . |
    i | . 1 .<1>1 . . . . . . . . . . . . . . . . |
    o | . . . .<3>. . . . . . . . . . . . . . . . |
    s | . . . . .<2>. . . . . . . . . . . . . . 1 |
    t | . . . . . .<3>. . . . . . . . . . . . . . |
    . | . . . . . . .<2>. . . . . . . . . . . . . |
    T | . . . . . . . .<2>. . . . . . . . . . . . |
    h | . . . . . . . . .<2>. . . . . . . . . . . |
    n | . . . . . . . . . .<2>. . . . . . . . . . |
    r | . . . . . . . . . . .<2>. . . . . . . . . |
    1 | . . . . . . . . . . . .<1>. . . . . . . . |
    2 | . . . . . . . . . . . . .<1>. . . . . . . |
    3 | . . . . . . . . . . . . . .<1>. . . . . . |
    c | . . . . . . . . . . . . . . .<1>. . . . . |
    d | . . . . . . . . . . . . . . . .<1>. . . . |
    f | . . . . . . . . . . . . . . . . .<1>. . . |
    g | . . . . . . . . . . . . . . . . . .<1>. . |
    _ | . . . . . . . . . . . . . . . . . . .<.>. |
    z | . . . . . . . . . . . . . . . . . . . .<.>|
    --+-------------------------------------------+
    (row = reference; col = test)
    <BLANKLINE>

    >>> print(cm.pretty_format(sort_by_count=True, truncate=10))
      |   e a i o s t . T h |
    --+---------------------+
      |<8>. . . . . . . . . |
    e | .<6>. 3 . . . . . . |
    a | . .<4>. . . . . . . |
    i | . 1 .<1>1 . . . . . |
    o | . . . .<3>. . . . . |
    s | . . . . .<2>. . . . |
    t | . . . . . .<3>. . . |
    . | . . . . . . .<2>. . |
    T | . . . . . . . .<2>. |
    h | . . . . . . . . .<2>|
    --+---------------------+
    (row = reference; col = test)
    <BLANKLINE>

    >>> print(cm.pretty_format(sort_by_count=True, truncate=10, values_in_chart=False))
       |                   1 |
       | 1 2 3 4 5 6 7 8 9 0 |
    ---+---------------------+
     1 |<8>. . . . . . . . . |
     2 | .<6>. 3 . . . . . . |
     3 | . .<4>. . . . . . . |
     4 | . 1 .<1>1 . . . . . |
     5 | . . . .<3>. . . . . |
     6 | . . . . .<2>. . . . |
     7 | . . . . . .<3>. . . |
     8 | . . . . . . .<2>. . |
     9 | . . . . . . . .<2>. |
    10 | . . . . . . . . .<2>|
    ---+---------------------+
    (row = reference; col = test)
    Value key:
         1:
         2: e
         3: a
         4: i
         5: o
         6: s
         7: t
         8: .
         9: T
        10: h
    <BLANKLINE>

For "e", the number of true positives should be 6, while the number of false negatives is 3.
So, the recall ought to be 6 / (6 + 3):

    >>> cm.recall("e") # doctest: +ELLIPSIS
    0.666666...

For "e", the false positive is just 1, so the precision should be 6 / (6 + 1):

    >>> cm.precision("e") # doctest: +ELLIPSIS
    0.857142...

The f-measure with default value of ``alpha = 0.5`` should then be:

* *1/(alpha/p + (1-alpha)/r) =*
* *1/(0.5/p + 0.5/r) =*
* *2pr / (p + r) =*
* *2 * 0.857142... * 0.666666... / (0.857142... + 0.666666...) =*
* *0.749999...*

    >>> cm.f_measure("e") # doctest: +ELLIPSIS
    0.749999...


--------------------
Association measures

--------------------

These measures are useful to determine whether the coocurrence of two random
events is meaningful. They are used, for instance, to distinguish collocations
from other pairs of adjacent words.

We bring some examples of bigram association calculations from Manning and
Schutze's SNLP, 2nd Ed. chapter 5.

    >>> n_new_companies, n_new, n_companies, N = 8, 15828, 4675, 14307668
    >>> bam = BigramAssocMeasures
    >>> bam.raw_freq(20, (42, 20), N) == 20. / N
    True
    >>> bam.student_t(n_new_companies, (n_new, n_companies), N)
    0.999...
    >>> bam.chi_sq(n_new_companies, (n_new, n_companies), N)
    1.54...
    >>> bam.likelihood_ratio(150, (12593, 932), N)
    1291...

For other associations, we ensure the ordering of the measures:

    >>> bam.mi_like(20, (42, 20), N) > bam.mi_like(20, (41, 27), N)
    True
    >>> bam.pmi(20, (42, 20), N) > bam.pmi(20, (41, 27), N)
    True
    >>> bam.phi_sq(20, (42, 20), N) > bam.phi_sq(20, (41, 27), N)
    True
    >>> bam.poisson_stirling(20, (42, 20), N) > bam.poisson_stirling(20, (41, 27), N)
    True
    >>> bam.jaccard(20, (42, 20), N) > bam.jaccard(20, (41, 27), N)
    True
    >>> bam.dice(20, (42, 20), N) > bam.dice(20, (41, 27), N)
    True
    >>> bam.fisher(20, (42, 20), N) > bam.fisher(20, (41, 27), N) # doctest: +SKIP
    False

For trigrams, we have to provide more count information:

    >>> n_w1_w2_w3 = 20
    >>> n_w1_w2, n_w1_w3, n_w2_w3 = 35, 60, 40
    >>> pair_counts = (n_w1_w2, n_w1_w3, n_w2_w3)
    >>> n_w1, n_w2, n_w3 = 100, 200, 300
    >>> uni_counts = (n_w1, n_w2, n_w3)
    >>> N = 14307668
    >>> tam = TrigramAssocMeasures
    >>> tam.raw_freq(n_w1_w2_w3, pair_counts, uni_counts, N) == 1. * n_w1_w2_w3 / N
    True
    >>> uni_counts2 = (n_w1, n_w2, 100)
    >>> tam.student_t(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.student_t(n_w1_w2_w3, pair_counts, uni_counts, N)
    True
    >>> tam.chi_sq(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.chi_sq(n_w1_w2_w3, pair_counts, uni_counts, N)
    True
    >>> tam.mi_like(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.mi_like(n_w1_w2_w3, pair_counts, uni_counts, N)
    True
    >>> tam.pmi(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.pmi(n_w1_w2_w3, pair_counts, uni_counts, N)
    True
    >>> tam.likelihood_ratio(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.likelihood_ratio(n_w1_w2_w3, pair_counts, uni_counts, N)
    True
    >>> tam.poisson_stirling(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.poisson_stirling(n_w1_w2_w3, pair_counts, uni_counts, N)
    True
    >>> tam.jaccard(n_w1_w2_w3, pair_counts, uni_counts2, N) > tam.jaccard(n_w1_w2_w3, pair_counts, uni_counts, N)
    True


For fourgrams, we have to provide more count information:

    >>> n_w1_w2_w3_w4 = 5
    >>> n_w1_w2, n_w1_w3, n_w2_w3 = 35, 60, 40
    >>> n_w1_w2_w3, n_w2_w3_w4 = 20, 10
    >>> pair_counts = (n_w1_w2, n_w1_w3, n_w2_w3)
    >>> triplet_counts = (n_w1_w2_w3, n_w2_w3_w4)
    >>> n_w1, n_w2, n_w3, n_w4 = 100, 200, 300, 400
    >>> uni_counts = (n_w1, n_w2, n_w3, n_w4)
    >>> N = 14307668
    >>> qam = QuadgramAssocMeasures
    >>> qam.raw_freq(n_w1_w2_w3_w4, pair_counts, triplet_counts, uni_counts, N) == 1. * n_w1_w2_w3_w4 / N
    True