Spaces:
Sleeping
Sleeping
File size: 16,421 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
# Natural Language Toolkit: Agreement Metrics
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Tom Lippincott <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
#
"""
Implementations of inter-annotator agreement coefficients surveyed by Artstein
and Poesio (2007), Inter-Coder Agreement for Computational Linguistics.
An agreement coefficient calculates the amount that annotators agreed on label
assignments beyond what is expected by chance.
In defining the AnnotationTask class, we use naming conventions similar to the
paper's terminology. There are three types of objects in an annotation task:
the coders (variables "c" and "C")
the items to be annotated (variables "i" and "I")
the potential categories to be assigned (variables "k" and "K")
Additionally, it is often the case that we don't want to treat two different
labels as complete disagreement, and so the AnnotationTask constructor can also
take a distance metric as a final argument. Distance metrics are simply
functions that take two arguments, and return a value between 0.0 and 1.0
indicating the distance between them. If not supplied, the default is binary
comparison between the arguments.
The simplest way to initialize an AnnotationTask is with a list of triples,
each containing a coder's assignment for one object in the task:
task = AnnotationTask(data=[('c1', '1', 'v1'),('c2', '1', 'v1'),...])
Note that the data list needs to contain the same number of triples for each
individual coder, containing category values for the same set of items.
Alpha (Krippendorff 1980)
Kappa (Cohen 1960)
S (Bennet, Albert and Goldstein 1954)
Pi (Scott 1955)
TODO: Describe handling of multiple coders and missing data
Expected results from the Artstein and Poesio survey paper:
>>> from nltk.metrics.agreement import AnnotationTask
>>> import os.path
>>> t = AnnotationTask(data=[x.split() for x in open(os.path.join(os.path.dirname(__file__), "artstein_poesio_example.txt"))])
>>> t.avg_Ao()
0.88
>>> round(t.pi(), 5)
0.79953
>>> round(t.S(), 2)
0.82
This would have returned a wrong value (0.0) in @785fb79 as coders are in
the wrong order. Subsequently, all values for pi(), S(), and kappa() would
have been wrong as they are computed with avg_Ao().
>>> t2 = AnnotationTask(data=[('b','1','stat'),('a','1','stat')])
>>> t2.avg_Ao()
1.0
The following, of course, also works.
>>> t3 = AnnotationTask(data=[('a','1','othr'),('b','1','othr')])
>>> t3.avg_Ao()
1.0
"""
import logging
from itertools import groupby
from operator import itemgetter
from nltk.internals import deprecated
from nltk.metrics.distance import binary_distance
from nltk.probability import ConditionalFreqDist, FreqDist
log = logging.getLogger(__name__)
class AnnotationTask:
"""Represents an annotation task, i.e. people assign labels to items.
Notation tries to match notation in Artstein and Poesio (2007).
In general, coders and items can be represented as any hashable object.
Integers, for example, are fine, though strings are more readable.
Labels must support the distance functions applied to them, so e.g.
a string-edit-distance makes no sense if your labels are integers,
whereas interval distance needs numeric values. A notable case of this
is the MASI metric, which requires Python sets.
"""
def __init__(self, data=None, distance=binary_distance):
"""Initialize an annotation task.
The data argument can be None (to create an empty annotation task) or a sequence of 3-tuples,
each representing a coder's labeling of an item:
``(coder,item,label)``
The distance argument is a function taking two arguments (labels) and producing a numerical distance.
The distance from a label to itself should be zero:
``distance(l,l) = 0``
"""
self.distance = distance
self.I = set()
self.K = set()
self.C = set()
self.data = []
if data is not None:
self.load_array(data)
def __str__(self):
return "\r\n".join(
map(
lambda x: "%s\t%s\t%s"
% (x["coder"], x["item"].replace("_", "\t"), ",".join(x["labels"])),
self.data,
)
)
def load_array(self, array):
"""Load an sequence of annotation results, appending to any data already loaded.
The argument is a sequence of 3-tuples, each representing a coder's labeling of an item:
(coder,item,label)
"""
for coder, item, labels in array:
self.C.add(coder)
self.K.add(labels)
self.I.add(item)
self.data.append({"coder": coder, "labels": labels, "item": item})
def agr(self, cA, cB, i, data=None):
"""Agreement between two coders on a given item"""
data = data or self.data
# cfedermann: we don't know what combination of coder/item will come
# first in x; to avoid StopIteration problems due to assuming an order
# cA,cB, we allow either for k1 and then look up the missing as k2.
k1 = next(x for x in data if x["coder"] in (cA, cB) and x["item"] == i)
if k1["coder"] == cA:
k2 = next(x for x in data if x["coder"] == cB and x["item"] == i)
else:
k2 = next(x for x in data if x["coder"] == cA and x["item"] == i)
ret = 1.0 - float(self.distance(k1["labels"], k2["labels"]))
log.debug("Observed agreement between %s and %s on %s: %f", cA, cB, i, ret)
log.debug(
'Distance between "%r" and "%r": %f', k1["labels"], k2["labels"], 1.0 - ret
)
return ret
def Nk(self, k):
return float(sum(1 for x in self.data if x["labels"] == k))
def Nik(self, i, k):
return float(sum(1 for x in self.data if x["item"] == i and x["labels"] == k))
def Nck(self, c, k):
return float(sum(1 for x in self.data if x["coder"] == c and x["labels"] == k))
@deprecated("Use Nk, Nik or Nck instead")
def N(self, k=None, i=None, c=None):
"""Implements the "n-notation" used in Artstein and Poesio (2007)"""
if k is not None and i is None and c is None:
ret = self.Nk(k)
elif k is not None and i is not None and c is None:
ret = self.Nik(i, k)
elif k is not None and c is not None and i is None:
ret = self.Nck(c, k)
else:
raise ValueError(
f"You must pass either i or c, not both! (k={k!r},i={i!r},c={c!r})"
)
log.debug("Count on N[%s,%s,%s]: %d", k, i, c, ret)
return ret
def _grouped_data(self, field, data=None):
data = data or self.data
return groupby(sorted(data, key=itemgetter(field)), itemgetter(field))
def Ao(self, cA, cB):
"""Observed agreement between two coders on all items."""
data = self._grouped_data(
"item", (x for x in self.data if x["coder"] in (cA, cB))
)
ret = sum(self.agr(cA, cB, item, item_data) for item, item_data in data) / len(
self.I
)
log.debug("Observed agreement between %s and %s: %f", cA, cB, ret)
return ret
def _pairwise_average(self, function):
"""
Calculates the average of function results for each coder pair
"""
total = 0
n = 0
s = self.C.copy()
for cA in self.C:
s.remove(cA)
for cB in s:
total += function(cA, cB)
n += 1
ret = total / n
return ret
def avg_Ao(self):
"""Average observed agreement across all coders and items."""
ret = self._pairwise_average(self.Ao)
log.debug("Average observed agreement: %f", ret)
return ret
def Do_Kw_pairwise(self, cA, cB, max_distance=1.0):
"""The observed disagreement for the weighted kappa coefficient."""
total = 0.0
data = (x for x in self.data if x["coder"] in (cA, cB))
for i, itemdata in self._grouped_data("item", data):
# we should have two items; distance doesn't care which comes first
total += self.distance(next(itemdata)["labels"], next(itemdata)["labels"])
ret = total / (len(self.I) * max_distance)
log.debug("Observed disagreement between %s and %s: %f", cA, cB, ret)
return ret
def Do_Kw(self, max_distance=1.0):
"""Averaged over all labelers"""
ret = self._pairwise_average(
lambda cA, cB: self.Do_Kw_pairwise(cA, cB, max_distance)
)
log.debug("Observed disagreement: %f", ret)
return ret
# Agreement Coefficients
def S(self):
"""Bennett, Albert and Goldstein 1954"""
Ae = 1.0 / len(self.K)
ret = (self.avg_Ao() - Ae) / (1.0 - Ae)
return ret
def pi(self):
"""Scott 1955; here, multi-pi.
Equivalent to K from Siegel and Castellan (1988).
"""
total = 0.0
label_freqs = FreqDist(x["labels"] for x in self.data)
for k, f in label_freqs.items():
total += f**2
Ae = total / ((len(self.I) * len(self.C)) ** 2)
return (self.avg_Ao() - Ae) / (1 - Ae)
def Ae_kappa(self, cA, cB):
Ae = 0.0
nitems = float(len(self.I))
label_freqs = ConditionalFreqDist((x["labels"], x["coder"]) for x in self.data)
for k in label_freqs.conditions():
Ae += (label_freqs[k][cA] / nitems) * (label_freqs[k][cB] / nitems)
return Ae
def kappa_pairwise(self, cA, cB):
""" """
Ae = self.Ae_kappa(cA, cB)
ret = (self.Ao(cA, cB) - Ae) / (1.0 - Ae)
log.debug("Expected agreement between %s and %s: %f", cA, cB, Ae)
return ret
def kappa(self):
"""Cohen 1960
Averages naively over kappas for each coder pair.
"""
return self._pairwise_average(self.kappa_pairwise)
def multi_kappa(self):
"""Davies and Fleiss 1982
Averages over observed and expected agreements for each coder pair.
"""
Ae = self._pairwise_average(self.Ae_kappa)
return (self.avg_Ao() - Ae) / (1.0 - Ae)
def Disagreement(self, label_freqs):
total_labels = sum(label_freqs.values())
pairs = 0.0
for j, nj in label_freqs.items():
for l, nl in label_freqs.items():
pairs += float(nj * nl) * self.distance(l, j)
return 1.0 * pairs / (total_labels * (total_labels - 1))
def alpha(self):
"""Krippendorff 1980"""
# check for degenerate cases
if len(self.K) == 0:
raise ValueError("Cannot calculate alpha, no data present!")
if len(self.K) == 1:
log.debug("Only one annotation value, alpha returning 1.")
return 1
if len(self.C) == 1 and len(self.I) == 1:
raise ValueError("Cannot calculate alpha, only one coder and item present!")
total_disagreement = 0.0
total_ratings = 0
all_valid_labels_freq = FreqDist([])
total_do = 0.0 # Total observed disagreement for all items.
for i, itemdata in self._grouped_data("item"):
label_freqs = FreqDist(x["labels"] for x in itemdata)
labels_count = sum(label_freqs.values())
if labels_count < 2:
# Ignore the item.
continue
all_valid_labels_freq += label_freqs
total_do += self.Disagreement(label_freqs) * labels_count
do = total_do / sum(all_valid_labels_freq.values())
de = self.Disagreement(all_valid_labels_freq) # Expected disagreement.
k_alpha = 1.0 - do / de
return k_alpha
def weighted_kappa_pairwise(self, cA, cB, max_distance=1.0):
"""Cohen 1968"""
total = 0.0
label_freqs = ConditionalFreqDist(
(x["coder"], x["labels"]) for x in self.data if x["coder"] in (cA, cB)
)
for j in self.K:
for l in self.K:
total += label_freqs[cA][j] * label_freqs[cB][l] * self.distance(j, l)
De = total / (max_distance * pow(len(self.I), 2))
log.debug("Expected disagreement between %s and %s: %f", cA, cB, De)
Do = self.Do_Kw_pairwise(cA, cB)
ret = 1.0 - (Do / De)
return ret
def weighted_kappa(self, max_distance=1.0):
"""Cohen 1968"""
return self._pairwise_average(
lambda cA, cB: self.weighted_kappa_pairwise(cA, cB, max_distance)
)
if __name__ == "__main__":
import optparse
import re
from nltk.metrics import distance
# process command-line arguments
parser = optparse.OptionParser()
parser.add_option(
"-d",
"--distance",
dest="distance",
default="binary_distance",
help="distance metric to use",
)
parser.add_option(
"-a",
"--agreement",
dest="agreement",
default="kappa",
help="agreement coefficient to calculate",
)
parser.add_option(
"-e",
"--exclude",
dest="exclude",
action="append",
default=[],
help="coder names to exclude (may be specified multiple times)",
)
parser.add_option(
"-i",
"--include",
dest="include",
action="append",
default=[],
help="coder names to include, same format as exclude",
)
parser.add_option(
"-f",
"--file",
dest="file",
help="file to read labelings from, each line with three columns: 'labeler item labels'",
)
parser.add_option(
"-v",
"--verbose",
dest="verbose",
default="0",
help="how much debugging to print on stderr (0-4)",
)
parser.add_option(
"-c",
"--columnsep",
dest="columnsep",
default="\t",
help="char/string that separates the three columns in the file, defaults to tab",
)
parser.add_option(
"-l",
"--labelsep",
dest="labelsep",
default=",",
help="char/string that separates labels (if labelers can assign more than one), defaults to comma",
)
parser.add_option(
"-p",
"--presence",
dest="presence",
default=None,
help="convert each labeling into 1 or 0, based on presence of LABEL",
)
parser.add_option(
"-T",
"--thorough",
dest="thorough",
default=False,
action="store_true",
help="calculate agreement for every subset of the annotators",
)
(options, remainder) = parser.parse_args()
if not options.file:
parser.print_help()
exit()
logging.basicConfig(level=50 - 10 * int(options.verbose))
# read in data from the specified file
data = []
with open(options.file) as infile:
for l in infile:
toks = l.split(options.columnsep)
coder, object_, labels = (
toks[0],
str(toks[1:-1]),
frozenset(toks[-1].strip().split(options.labelsep)),
)
if (
(options.include == options.exclude)
or (len(options.include) > 0 and coder in options.include)
or (len(options.exclude) > 0 and coder not in options.exclude)
):
data.append((coder, object_, labels))
if options.presence:
task = AnnotationTask(
data, getattr(distance, options.distance)(options.presence)
)
else:
task = AnnotationTask(data, getattr(distance, options.distance))
if options.thorough:
pass
else:
print(getattr(task, options.agreement)())
logging.shutdown()
|