Spaces:
Sleeping
Sleeping
File size: 63,760 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 |
# Natural Language Toolkit: A Chart Parser
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Edward Loper <[email protected]>
# Steven Bird <[email protected]>
# Jean Mark Gawron <[email protected]>
# Peter Ljunglöf <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
Data classes and parser implementations for "chart parsers", which
use dynamic programming to efficiently parse a text. A chart
parser derives parse trees for a text by iteratively adding "edges"
to a "chart." Each edge represents a hypothesis about the tree
structure for a subsequence of the text. The chart is a
"blackboard" for composing and combining these hypotheses.
When a chart parser begins parsing a text, it creates a new (empty)
chart, spanning the text. It then incrementally adds new edges to the
chart. A set of "chart rules" specifies the conditions under which
new edges should be added to the chart. Once the chart reaches a
stage where none of the chart rules adds any new edges, parsing is
complete.
Charts are encoded with the ``Chart`` class, and edges are encoded with
the ``TreeEdge`` and ``LeafEdge`` classes. The chart parser module
defines three chart parsers:
- ``ChartParser`` is a simple and flexible chart parser. Given a
set of chart rules, it will apply those rules to the chart until
no more edges are added.
- ``SteppingChartParser`` is a subclass of ``ChartParser`` that can
be used to step through the parsing process.
"""
import itertools
import re
import warnings
from functools import total_ordering
from nltk.grammar import PCFG, is_nonterminal, is_terminal
from nltk.internals import raise_unorderable_types
from nltk.parse.api import ParserI
from nltk.tree import Tree
from nltk.util import OrderedDict
########################################################################
## Edges
########################################################################
@total_ordering
class EdgeI:
"""
A hypothesis about the structure of part of a sentence.
Each edge records the fact that a structure is (partially)
consistent with the sentence. An edge contains:
- A span, indicating what part of the sentence is
consistent with the hypothesized structure.
- A left-hand side, specifying what kind of structure is
hypothesized.
- A right-hand side, specifying the contents of the
hypothesized structure.
- A dot position, indicating how much of the hypothesized
structure is consistent with the sentence.
Every edge is either complete or incomplete:
- An edge is complete if its structure is fully consistent
with the sentence.
- An edge is incomplete if its structure is partially
consistent with the sentence. For every incomplete edge, the
span specifies a possible prefix for the edge's structure.
There are two kinds of edge:
- A ``TreeEdge`` records which trees have been found to
be (partially) consistent with the text.
- A ``LeafEdge`` records the tokens occurring in the text.
The ``EdgeI`` interface provides a common interface to both types
of edge, allowing chart parsers to treat them in a uniform manner.
"""
def __init__(self):
if self.__class__ == EdgeI:
raise TypeError("Edge is an abstract interface")
# ////////////////////////////////////////////////////////////
# Span
# ////////////////////////////////////////////////////////////
def span(self):
"""
Return a tuple ``(s, e)``, where ``tokens[s:e]`` is the
portion of the sentence that is consistent with this
edge's structure.
:rtype: tuple(int, int)
"""
raise NotImplementedError()
def start(self):
"""
Return the start index of this edge's span.
:rtype: int
"""
raise NotImplementedError()
def end(self):
"""
Return the end index of this edge's span.
:rtype: int
"""
raise NotImplementedError()
def length(self):
"""
Return the length of this edge's span.
:rtype: int
"""
raise NotImplementedError()
# ////////////////////////////////////////////////////////////
# Left Hand Side
# ////////////////////////////////////////////////////////////
def lhs(self):
"""
Return this edge's left-hand side, which specifies what kind
of structure is hypothesized by this edge.
:see: ``TreeEdge`` and ``LeafEdge`` for a description of
the left-hand side values for each edge type.
"""
raise NotImplementedError()
# ////////////////////////////////////////////////////////////
# Right Hand Side
# ////////////////////////////////////////////////////////////
def rhs(self):
"""
Return this edge's right-hand side, which specifies
the content of the structure hypothesized by this edge.
:see: ``TreeEdge`` and ``LeafEdge`` for a description of
the right-hand side values for each edge type.
"""
raise NotImplementedError()
def dot(self):
"""
Return this edge's dot position, which indicates how much of
the hypothesized structure is consistent with the
sentence. In particular, ``self.rhs[:dot]`` is consistent
with ``tokens[self.start():self.end()]``.
:rtype: int
"""
raise NotImplementedError()
def nextsym(self):
"""
Return the element of this edge's right-hand side that
immediately follows its dot.
:rtype: Nonterminal or terminal or None
"""
raise NotImplementedError()
def is_complete(self):
"""
Return True if this edge's structure is fully consistent
with the text.
:rtype: bool
"""
raise NotImplementedError()
def is_incomplete(self):
"""
Return True if this edge's structure is partially consistent
with the text.
:rtype: bool
"""
raise NotImplementedError()
# ////////////////////////////////////////////////////////////
# Comparisons & hashing
# ////////////////////////////////////////////////////////////
def __eq__(self, other):
return (
self.__class__ is other.__class__
and self._comparison_key == other._comparison_key
)
def __ne__(self, other):
return not self == other
def __lt__(self, other):
if not isinstance(other, EdgeI):
raise_unorderable_types("<", self, other)
if self.__class__ is other.__class__:
return self._comparison_key < other._comparison_key
else:
return self.__class__.__name__ < other.__class__.__name__
def __hash__(self):
try:
return self._hash
except AttributeError:
self._hash = hash(self._comparison_key)
return self._hash
class TreeEdge(EdgeI):
"""
An edge that records the fact that a tree is (partially)
consistent with the sentence. A tree edge consists of:
- A span, indicating what part of the sentence is
consistent with the hypothesized tree.
- A left-hand side, specifying the hypothesized tree's node
value.
- A right-hand side, specifying the hypothesized tree's
children. Each element of the right-hand side is either a
terminal, specifying a token with that terminal as its leaf
value; or a nonterminal, specifying a subtree with that
nonterminal's symbol as its node value.
- A dot position, indicating which children are consistent
with part of the sentence. In particular, if ``dot`` is the
dot position, ``rhs`` is the right-hand size, ``(start,end)``
is the span, and ``sentence`` is the list of tokens in the
sentence, then ``tokens[start:end]`` can be spanned by the
children specified by ``rhs[:dot]``.
For more information about edges, see the ``EdgeI`` interface.
"""
def __init__(self, span, lhs, rhs, dot=0):
"""
Construct a new ``TreeEdge``.
:type span: tuple(int, int)
:param span: A tuple ``(s, e)``, where ``tokens[s:e]`` is the
portion of the sentence that is consistent with the new
edge's structure.
:type lhs: Nonterminal
:param lhs: The new edge's left-hand side, specifying the
hypothesized tree's node value.
:type rhs: list(Nonterminal and str)
:param rhs: The new edge's right-hand side, specifying the
hypothesized tree's children.
:type dot: int
:param dot: The position of the new edge's dot. This position
specifies what prefix of the production's right hand side
is consistent with the text. In particular, if
``sentence`` is the list of tokens in the sentence, then
``okens[span[0]:span[1]]`` can be spanned by the
children specified by ``rhs[:dot]``.
"""
self._span = span
self._lhs = lhs
rhs = tuple(rhs)
self._rhs = rhs
self._dot = dot
self._comparison_key = (span, lhs, rhs, dot)
@staticmethod
def from_production(production, index):
"""
Return a new ``TreeEdge`` formed from the given production.
The new edge's left-hand side and right-hand side will
be taken from ``production``; its span will be
``(index,index)``; and its dot position will be ``0``.
:rtype: TreeEdge
"""
return TreeEdge(
span=(index, index), lhs=production.lhs(), rhs=production.rhs(), dot=0
)
def move_dot_forward(self, new_end):
"""
Return a new ``TreeEdge`` formed from this edge.
The new edge's dot position is increased by ``1``,
and its end index will be replaced by ``new_end``.
:param new_end: The new end index.
:type new_end: int
:rtype: TreeEdge
"""
return TreeEdge(
span=(self._span[0], new_end),
lhs=self._lhs,
rhs=self._rhs,
dot=self._dot + 1,
)
# Accessors
def lhs(self):
return self._lhs
def span(self):
return self._span
def start(self):
return self._span[0]
def end(self):
return self._span[1]
def length(self):
return self._span[1] - self._span[0]
def rhs(self):
return self._rhs
def dot(self):
return self._dot
def is_complete(self):
return self._dot == len(self._rhs)
def is_incomplete(self):
return self._dot != len(self._rhs)
def nextsym(self):
if self._dot >= len(self._rhs):
return None
else:
return self._rhs[self._dot]
# String representation
def __str__(self):
str = f"[{self._span[0]}:{self._span[1]}] "
str += "%-2r ->" % (self._lhs,)
for i in range(len(self._rhs)):
if i == self._dot:
str += " *"
str += " %s" % repr(self._rhs[i])
if len(self._rhs) == self._dot:
str += " *"
return str
def __repr__(self):
return "[Edge: %s]" % self
class LeafEdge(EdgeI):
"""
An edge that records the fact that a leaf value is consistent with
a word in the sentence. A leaf edge consists of:
- An index, indicating the position of the word.
- A leaf, specifying the word's content.
A leaf edge's left-hand side is its leaf value, and its right hand
side is ``()``. Its span is ``[index, index+1]``, and its dot
position is ``0``.
"""
def __init__(self, leaf, index):
"""
Construct a new ``LeafEdge``.
:param leaf: The new edge's leaf value, specifying the word
that is recorded by this edge.
:param index: The new edge's index, specifying the position of
the word that is recorded by this edge.
"""
self._leaf = leaf
self._index = index
self._comparison_key = (leaf, index)
# Accessors
def lhs(self):
return self._leaf
def span(self):
return (self._index, self._index + 1)
def start(self):
return self._index
def end(self):
return self._index + 1
def length(self):
return 1
def rhs(self):
return ()
def dot(self):
return 0
def is_complete(self):
return True
def is_incomplete(self):
return False
def nextsym(self):
return None
# String representations
def __str__(self):
return f"[{self._index}:{self._index + 1}] {repr(self._leaf)}"
def __repr__(self):
return "[Edge: %s]" % (self)
########################################################################
## Chart
########################################################################
class Chart:
"""
A blackboard for hypotheses about the syntactic constituents of a
sentence. A chart contains a set of edges, and each edge encodes
a single hypothesis about the structure of some portion of the
sentence.
The ``select`` method can be used to select a specific collection
of edges. For example ``chart.select(is_complete=True, start=0)``
yields all complete edges whose start indices are 0. To ensure
the efficiency of these selection operations, ``Chart`` dynamically
creates and maintains an index for each set of attributes that
have been selected on.
In order to reconstruct the trees that are represented by an edge,
the chart associates each edge with a set of child pointer lists.
A child pointer list is a list of the edges that license an
edge's right-hand side.
:ivar _tokens: The sentence that the chart covers.
:ivar _num_leaves: The number of tokens.
:ivar _edges: A list of the edges in the chart
:ivar _edge_to_cpls: A dictionary mapping each edge to a set
of child pointer lists that are associated with that edge.
:ivar _indexes: A dictionary mapping tuples of edge attributes
to indices, where each index maps the corresponding edge
attribute values to lists of edges.
"""
def __init__(self, tokens):
"""
Construct a new chart. The chart is initialized with the
leaf edges corresponding to the terminal leaves.
:type tokens: list
:param tokens: The sentence that this chart will be used to parse.
"""
# Record the sentence token and the sentence length.
self._tokens = tuple(tokens)
self._num_leaves = len(self._tokens)
# Initialise the chart.
self.initialize()
def initialize(self):
"""
Clear the chart.
"""
# A list of edges contained in this chart.
self._edges = []
# The set of child pointer lists associated with each edge.
self._edge_to_cpls = {}
# Indexes mapping attribute values to lists of edges
# (used by select()).
self._indexes = {}
# ////////////////////////////////////////////////////////////
# Sentence Access
# ////////////////////////////////////////////////////////////
def num_leaves(self):
"""
Return the number of words in this chart's sentence.
:rtype: int
"""
return self._num_leaves
def leaf(self, index):
"""
Return the leaf value of the word at the given index.
:rtype: str
"""
return self._tokens[index]
def leaves(self):
"""
Return a list of the leaf values of each word in the
chart's sentence.
:rtype: list(str)
"""
return self._tokens
# ////////////////////////////////////////////////////////////
# Edge access
# ////////////////////////////////////////////////////////////
def edges(self):
"""
Return a list of all edges in this chart. New edges
that are added to the chart after the call to edges()
will *not* be contained in this list.
:rtype: list(EdgeI)
:see: ``iteredges``, ``select``
"""
return self._edges[:]
def iteredges(self):
"""
Return an iterator over the edges in this chart. It is
not guaranteed that new edges which are added to the
chart before the iterator is exhausted will also be generated.
:rtype: iter(EdgeI)
:see: ``edges``, ``select``
"""
return iter(self._edges)
# Iterating over the chart yields its edges.
__iter__ = iteredges
def num_edges(self):
"""
Return the number of edges contained in this chart.
:rtype: int
"""
return len(self._edge_to_cpls)
def select(self, **restrictions):
"""
Return an iterator over the edges in this chart. Any
new edges that are added to the chart before the iterator
is exahusted will also be generated. ``restrictions``
can be used to restrict the set of edges that will be
generated.
:param span: Only generate edges ``e`` where ``e.span()==span``
:param start: Only generate edges ``e`` where ``e.start()==start``
:param end: Only generate edges ``e`` where ``e.end()==end``
:param length: Only generate edges ``e`` where ``e.length()==length``
:param lhs: Only generate edges ``e`` where ``e.lhs()==lhs``
:param rhs: Only generate edges ``e`` where ``e.rhs()==rhs``
:param nextsym: Only generate edges ``e`` where
``e.nextsym()==nextsym``
:param dot: Only generate edges ``e`` where ``e.dot()==dot``
:param is_complete: Only generate edges ``e`` where
``e.is_complete()==is_complete``
:param is_incomplete: Only generate edges ``e`` where
``e.is_incomplete()==is_incomplete``
:rtype: iter(EdgeI)
"""
# If there are no restrictions, then return all edges.
if restrictions == {}:
return iter(self._edges)
# Find the index corresponding to the given restrictions.
restr_keys = sorted(restrictions.keys())
restr_keys = tuple(restr_keys)
# If it doesn't exist, then create it.
if restr_keys not in self._indexes:
self._add_index(restr_keys)
vals = tuple(restrictions[key] for key in restr_keys)
return iter(self._indexes[restr_keys].get(vals, []))
def _add_index(self, restr_keys):
"""
A helper function for ``select``, which creates a new index for
a given set of attributes (aka restriction keys).
"""
# Make sure it's a valid index.
for key in restr_keys:
if not hasattr(EdgeI, key):
raise ValueError("Bad restriction: %s" % key)
# Create the index.
index = self._indexes[restr_keys] = {}
# Add all existing edges to the index.
for edge in self._edges:
vals = tuple(getattr(edge, key)() for key in restr_keys)
index.setdefault(vals, []).append(edge)
def _register_with_indexes(self, edge):
"""
A helper function for ``insert``, which registers the new
edge with all existing indexes.
"""
for (restr_keys, index) in self._indexes.items():
vals = tuple(getattr(edge, key)() for key in restr_keys)
index.setdefault(vals, []).append(edge)
# ////////////////////////////////////////////////////////////
# Edge Insertion
# ////////////////////////////////////////////////////////////
def insert_with_backpointer(self, new_edge, previous_edge, child_edge):
"""
Add a new edge to the chart, using a pointer to the previous edge.
"""
cpls = self.child_pointer_lists(previous_edge)
new_cpls = [cpl + (child_edge,) for cpl in cpls]
return self.insert(new_edge, *new_cpls)
def insert(self, edge, *child_pointer_lists):
"""
Add a new edge to the chart, and return True if this operation
modified the chart. In particular, return true iff the chart
did not already contain ``edge``, or if it did not already associate
``child_pointer_lists`` with ``edge``.
:type edge: EdgeI
:param edge: The new edge
:type child_pointer_lists: sequence of tuple(EdgeI)
:param child_pointer_lists: A sequence of lists of the edges that
were used to form this edge. This list is used to reconstruct
the trees (or partial trees) that are associated with ``edge``.
:rtype: bool
"""
# Is it a new edge?
if edge not in self._edge_to_cpls:
# Add it to the list of edges.
self._append_edge(edge)
# Register with indexes.
self._register_with_indexes(edge)
# Get the set of child pointer lists for this edge.
cpls = self._edge_to_cpls.setdefault(edge, OrderedDict())
chart_was_modified = False
for child_pointer_list in child_pointer_lists:
child_pointer_list = tuple(child_pointer_list)
if child_pointer_list not in cpls:
# It's a new CPL; register it, and return true.
cpls[child_pointer_list] = True
chart_was_modified = True
return chart_was_modified
def _append_edge(self, edge):
self._edges.append(edge)
# ////////////////////////////////////////////////////////////
# Tree extraction & child pointer lists
# ////////////////////////////////////////////////////////////
def parses(self, root, tree_class=Tree):
"""
Return an iterator of the complete tree structures that span
the entire chart, and whose root node is ``root``.
"""
for edge in self.select(start=0, end=self._num_leaves, lhs=root):
yield from self.trees(edge, tree_class=tree_class, complete=True)
def trees(self, edge, tree_class=Tree, complete=False):
"""
Return an iterator of the tree structures that are associated
with ``edge``.
If ``edge`` is incomplete, then the unexpanded children will be
encoded as childless subtrees, whose node value is the
corresponding terminal or nonterminal.
:rtype: list(Tree)
:note: If two trees share a common subtree, then the same
Tree may be used to encode that subtree in
both trees. If you need to eliminate this subtree
sharing, then create a deep copy of each tree.
"""
return iter(self._trees(edge, complete, memo={}, tree_class=tree_class))
def _trees(self, edge, complete, memo, tree_class):
"""
A helper function for ``trees``.
:param memo: A dictionary used to record the trees that we've
generated for each edge, so that when we see an edge more
than once, we can reuse the same trees.
"""
# If we've seen this edge before, then reuse our old answer.
if edge in memo:
return memo[edge]
# when we're reading trees off the chart, don't use incomplete edges
if complete and edge.is_incomplete():
return []
# Leaf edges.
if isinstance(edge, LeafEdge):
leaf = self._tokens[edge.start()]
memo[edge] = [leaf]
return [leaf]
# Until we're done computing the trees for edge, set
# memo[edge] to be empty. This has the effect of filtering
# out any cyclic trees (i.e., trees that contain themselves as
# descendants), because if we reach this edge via a cycle,
# then it will appear that the edge doesn't generate any trees.
memo[edge] = []
trees = []
lhs = edge.lhs().symbol()
# Each child pointer list can be used to form trees.
for cpl in self.child_pointer_lists(edge):
# Get the set of child choices for each child pointer.
# child_choices[i] is the set of choices for the tree's
# ith child.
child_choices = [self._trees(cp, complete, memo, tree_class) for cp in cpl]
# For each combination of children, add a tree.
for children in itertools.product(*child_choices):
trees.append(tree_class(lhs, children))
# If the edge is incomplete, then extend it with "partial trees":
if edge.is_incomplete():
unexpanded = [tree_class(elt, []) for elt in edge.rhs()[edge.dot() :]]
for tree in trees:
tree.extend(unexpanded)
# Update the memoization dictionary.
memo[edge] = trees
# Return the list of trees.
return trees
def child_pointer_lists(self, edge):
"""
Return the set of child pointer lists for the given edge.
Each child pointer list is a list of edges that have
been used to form this edge.
:rtype: list(list(EdgeI))
"""
# Make a copy, in case they modify it.
return self._edge_to_cpls.get(edge, {}).keys()
# ////////////////////////////////////////////////////////////
# Display
# ////////////////////////////////////////////////////////////
def pretty_format_edge(self, edge, width=None):
"""
Return a pretty-printed string representation of a given edge
in this chart.
:rtype: str
:param width: The number of characters allotted to each
index in the sentence.
"""
if width is None:
width = 50 // (self.num_leaves() + 1)
(start, end) = (edge.start(), edge.end())
str = "|" + ("." + " " * (width - 1)) * start
# Zero-width edges are "#" if complete, ">" if incomplete
if start == end:
if edge.is_complete():
str += "#"
else:
str += ">"
# Spanning complete edges are "[===]"; Other edges are
# "[---]" if complete, "[--->" if incomplete
elif edge.is_complete() and edge.span() == (0, self._num_leaves):
str += "[" + ("=" * width) * (end - start - 1) + "=" * (width - 1) + "]"
elif edge.is_complete():
str += "[" + ("-" * width) * (end - start - 1) + "-" * (width - 1) + "]"
else:
str += "[" + ("-" * width) * (end - start - 1) + "-" * (width - 1) + ">"
str += (" " * (width - 1) + ".") * (self._num_leaves - end)
return str + "| %s" % edge
def pretty_format_leaves(self, width=None):
"""
Return a pretty-printed string representation of this
chart's leaves. This string can be used as a header
for calls to ``pretty_format_edge``.
"""
if width is None:
width = 50 // (self.num_leaves() + 1)
if self._tokens is not None and width > 1:
header = "|."
for tok in self._tokens:
header += tok[: width - 1].center(width - 1) + "."
header += "|"
else:
header = ""
return header
def pretty_format(self, width=None):
"""
Return a pretty-printed string representation of this chart.
:param width: The number of characters allotted to each
index in the sentence.
:rtype: str
"""
if width is None:
width = 50 // (self.num_leaves() + 1)
# sort edges: primary key=length, secondary key=start index.
# (and filter out the token edges)
edges = sorted((e.length(), e.start(), e) for e in self)
edges = [e for (_, _, e) in edges]
return (
self.pretty_format_leaves(width)
+ "\n"
+ "\n".join(self.pretty_format_edge(edge, width) for edge in edges)
)
# ////////////////////////////////////////////////////////////
# Display: Dot (AT&T Graphviz)
# ////////////////////////////////////////////////////////////
def dot_digraph(self):
# Header
s = "digraph nltk_chart {\n"
# s += ' size="5,5";\n'
s += " rankdir=LR;\n"
s += " node [height=0.1,width=0.1];\n"
s += ' node [style=filled, color="lightgray"];\n'
# Set up the nodes
for y in range(self.num_edges(), -1, -1):
if y == 0:
s += ' node [style=filled, color="black"];\n'
for x in range(self.num_leaves() + 1):
if y == 0 or (
x <= self._edges[y - 1].start() or x >= self._edges[y - 1].end()
):
s += ' %04d.%04d [label=""];\n' % (x, y)
# Add a spacer
s += " x [style=invis]; x->0000.0000 [style=invis];\n"
# Declare ranks.
for x in range(self.num_leaves() + 1):
s += " {rank=same;"
for y in range(self.num_edges() + 1):
if y == 0 or (
x <= self._edges[y - 1].start() or x >= self._edges[y - 1].end()
):
s += " %04d.%04d" % (x, y)
s += "}\n"
# Add the leaves
s += " edge [style=invis, weight=100];\n"
s += " node [shape=plaintext]\n"
s += " 0000.0000"
for x in range(self.num_leaves()):
s += "->%s->%04d.0000" % (self.leaf(x), x + 1)
s += ";\n\n"
# Add the edges
s += " edge [style=solid, weight=1];\n"
for y, edge in enumerate(self):
for x in range(edge.start()):
s += ' %04d.%04d -> %04d.%04d [style="invis"];\n' % (
x,
y + 1,
x + 1,
y + 1,
)
s += ' %04d.%04d -> %04d.%04d [label="%s"];\n' % (
edge.start(),
y + 1,
edge.end(),
y + 1,
edge,
)
for x in range(edge.end(), self.num_leaves()):
s += ' %04d.%04d -> %04d.%04d [style="invis"];\n' % (
x,
y + 1,
x + 1,
y + 1,
)
s += "}\n"
return s
########################################################################
## Chart Rules
########################################################################
class ChartRuleI:
"""
A rule that specifies what new edges are licensed by any given set
of existing edges. Each chart rule expects a fixed number of
edges, as indicated by the class variable ``NUM_EDGES``. In
particular:
- A chart rule with ``NUM_EDGES=0`` specifies what new edges are
licensed, regardless of existing edges.
- A chart rule with ``NUM_EDGES=1`` specifies what new edges are
licensed by a single existing edge.
- A chart rule with ``NUM_EDGES=2`` specifies what new edges are
licensed by a pair of existing edges.
:type NUM_EDGES: int
:cvar NUM_EDGES: The number of existing edges that this rule uses
to license new edges. Typically, this number ranges from zero
to two.
"""
def apply(self, chart, grammar, *edges):
"""
Return a generator that will add edges licensed by this rule
and the given edges to the chart, one at a time. Each
time the generator is resumed, it will either add a new
edge and yield that edge; or return.
:type edges: list(EdgeI)
:param edges: A set of existing edges. The number of edges
that should be passed to ``apply()`` is specified by the
``NUM_EDGES`` class variable.
:rtype: iter(EdgeI)
"""
raise NotImplementedError()
def apply_everywhere(self, chart, grammar):
"""
Return a generator that will add all edges licensed by
this rule, given the edges that are currently in the
chart, one at a time. Each time the generator is resumed,
it will either add a new edge and yield that edge; or return.
:rtype: iter(EdgeI)
"""
raise NotImplementedError()
class AbstractChartRule(ChartRuleI):
"""
An abstract base class for chart rules. ``AbstractChartRule``
provides:
- A default implementation for ``apply``.
- A default implementation for ``apply_everywhere``,
(Currently, this implementation assumes that ``NUM_EDGES <= 3``.)
- A default implementation for ``__str__``, which returns a
name based on the rule's class name.
"""
# Subclasses must define apply.
def apply(self, chart, grammar, *edges):
raise NotImplementedError()
# Default: loop through the given number of edges, and call
# self.apply() for each set of edges.
def apply_everywhere(self, chart, grammar):
if self.NUM_EDGES == 0:
yield from self.apply(chart, grammar)
elif self.NUM_EDGES == 1:
for e1 in chart:
yield from self.apply(chart, grammar, e1)
elif self.NUM_EDGES == 2:
for e1 in chart:
for e2 in chart:
yield from self.apply(chart, grammar, e1, e2)
elif self.NUM_EDGES == 3:
for e1 in chart:
for e2 in chart:
for e3 in chart:
yield from self.apply(chart, grammar, e1, e2, e3)
else:
raise AssertionError("NUM_EDGES>3 is not currently supported")
# Default: return a name based on the class name.
def __str__(self):
# Add spaces between InitialCapsWords.
return re.sub("([a-z])([A-Z])", r"\1 \2", self.__class__.__name__)
# ////////////////////////////////////////////////////////////
# Fundamental Rule
# ////////////////////////////////////////////////////////////
class FundamentalRule(AbstractChartRule):
r"""
A rule that joins two adjacent edges to form a single combined
edge. In particular, this rule specifies that any pair of edges
- ``[A -> alpha \* B beta][i:j]``
- ``[B -> gamma \*][j:k]``
licenses the edge:
- ``[A -> alpha B * beta][i:j]``
"""
NUM_EDGES = 2
def apply(self, chart, grammar, left_edge, right_edge):
# Make sure the rule is applicable.
if not (
left_edge.is_incomplete()
and right_edge.is_complete()
and left_edge.end() == right_edge.start()
and left_edge.nextsym() == right_edge.lhs()
):
return
# Construct the new edge.
new_edge = left_edge.move_dot_forward(right_edge.end())
# Insert it into the chart.
if chart.insert_with_backpointer(new_edge, left_edge, right_edge):
yield new_edge
class SingleEdgeFundamentalRule(FundamentalRule):
r"""
A rule that joins a given edge with adjacent edges in the chart,
to form combined edges. In particular, this rule specifies that
either of the edges:
- ``[A -> alpha \* B beta][i:j]``
- ``[B -> gamma \*][j:k]``
licenses the edge:
- ``[A -> alpha B * beta][i:j]``
if the other edge is already in the chart.
:note: This is basically ``FundamentalRule``, with one edge left
unspecified.
"""
NUM_EDGES = 1
def apply(self, chart, grammar, edge):
if edge.is_incomplete():
yield from self._apply_incomplete(chart, grammar, edge)
else:
yield from self._apply_complete(chart, grammar, edge)
def _apply_complete(self, chart, grammar, right_edge):
for left_edge in chart.select(
end=right_edge.start(), is_complete=False, nextsym=right_edge.lhs()
):
new_edge = left_edge.move_dot_forward(right_edge.end())
if chart.insert_with_backpointer(new_edge, left_edge, right_edge):
yield new_edge
def _apply_incomplete(self, chart, grammar, left_edge):
for right_edge in chart.select(
start=left_edge.end(), is_complete=True, lhs=left_edge.nextsym()
):
new_edge = left_edge.move_dot_forward(right_edge.end())
if chart.insert_with_backpointer(new_edge, left_edge, right_edge):
yield new_edge
# ////////////////////////////////////////////////////////////
# Inserting Terminal Leafs
# ////////////////////////////////////////////////////////////
class LeafInitRule(AbstractChartRule):
NUM_EDGES = 0
def apply(self, chart, grammar):
for index in range(chart.num_leaves()):
new_edge = LeafEdge(chart.leaf(index), index)
if chart.insert(new_edge, ()):
yield new_edge
# ////////////////////////////////////////////////////////////
# Top-Down Prediction
# ////////////////////////////////////////////////////////////
class TopDownInitRule(AbstractChartRule):
r"""
A rule licensing edges corresponding to the grammar productions for
the grammar's start symbol. In particular, this rule specifies that
``[S -> \* alpha][0:i]`` is licensed for each grammar production
``S -> alpha``, where ``S`` is the grammar's start symbol.
"""
NUM_EDGES = 0
def apply(self, chart, grammar):
for prod in grammar.productions(lhs=grammar.start()):
new_edge = TreeEdge.from_production(prod, 0)
if chart.insert(new_edge, ()):
yield new_edge
class TopDownPredictRule(AbstractChartRule):
r"""
A rule licensing edges corresponding to the grammar productions
for the nonterminal following an incomplete edge's dot. In
particular, this rule specifies that
``[A -> alpha \* B beta][i:j]`` licenses the edge
``[B -> \* gamma][j:j]`` for each grammar production ``B -> gamma``.
:note: This rule corresponds to the Predictor Rule in Earley parsing.
"""
NUM_EDGES = 1
def apply(self, chart, grammar, edge):
if edge.is_complete():
return
for prod in grammar.productions(lhs=edge.nextsym()):
new_edge = TreeEdge.from_production(prod, edge.end())
if chart.insert(new_edge, ()):
yield new_edge
class CachedTopDownPredictRule(TopDownPredictRule):
r"""
A cached version of ``TopDownPredictRule``. After the first time
this rule is applied to an edge with a given ``end`` and ``next``,
it will not generate any more edges for edges with that ``end`` and
``next``.
If ``chart`` or ``grammar`` are changed, then the cache is flushed.
"""
def __init__(self):
TopDownPredictRule.__init__(self)
self._done = {}
def apply(self, chart, grammar, edge):
if edge.is_complete():
return
nextsym, index = edge.nextsym(), edge.end()
if not is_nonterminal(nextsym):
return
# If we've already applied this rule to an edge with the same
# next & end, and the chart & grammar have not changed, then
# just return (no new edges to add).
done = self._done.get((nextsym, index), (None, None))
if done[0] is chart and done[1] is grammar:
return
# Add all the edges indicated by the top down expand rule.
for prod in grammar.productions(lhs=nextsym):
# If the left corner in the predicted production is
# leaf, it must match with the input.
if prod.rhs():
first = prod.rhs()[0]
if is_terminal(first):
if index >= chart.num_leaves() or first != chart.leaf(index):
continue
new_edge = TreeEdge.from_production(prod, index)
if chart.insert(new_edge, ()):
yield new_edge
# Record the fact that we've applied this rule.
self._done[nextsym, index] = (chart, grammar)
# ////////////////////////////////////////////////////////////
# Bottom-Up Prediction
# ////////////////////////////////////////////////////////////
class BottomUpPredictRule(AbstractChartRule):
r"""
A rule licensing any edge corresponding to a production whose
right-hand side begins with a complete edge's left-hand side. In
particular, this rule specifies that ``[A -> alpha \*]`` licenses
the edge ``[B -> \* A beta]`` for each grammar production ``B -> A beta``.
"""
NUM_EDGES = 1
def apply(self, chart, grammar, edge):
if edge.is_incomplete():
return
for prod in grammar.productions(rhs=edge.lhs()):
new_edge = TreeEdge.from_production(prod, edge.start())
if chart.insert(new_edge, ()):
yield new_edge
class BottomUpPredictCombineRule(BottomUpPredictRule):
r"""
A rule licensing any edge corresponding to a production whose
right-hand side begins with a complete edge's left-hand side. In
particular, this rule specifies that ``[A -> alpha \*]``
licenses the edge ``[B -> A \* beta]`` for each grammar
production ``B -> A beta``.
:note: This is like ``BottomUpPredictRule``, but it also applies
the ``FundamentalRule`` to the resulting edge.
"""
NUM_EDGES = 1
def apply(self, chart, grammar, edge):
if edge.is_incomplete():
return
for prod in grammar.productions(rhs=edge.lhs()):
new_edge = TreeEdge(edge.span(), prod.lhs(), prod.rhs(), 1)
if chart.insert(new_edge, (edge,)):
yield new_edge
class EmptyPredictRule(AbstractChartRule):
"""
A rule that inserts all empty productions as passive edges,
in every position in the chart.
"""
NUM_EDGES = 0
def apply(self, chart, grammar):
for prod in grammar.productions(empty=True):
for index in range(chart.num_leaves() + 1):
new_edge = TreeEdge.from_production(prod, index)
if chart.insert(new_edge, ()):
yield new_edge
########################################################################
## Filtered Bottom Up
########################################################################
class FilteredSingleEdgeFundamentalRule(SingleEdgeFundamentalRule):
def _apply_complete(self, chart, grammar, right_edge):
end = right_edge.end()
nexttoken = end < chart.num_leaves() and chart.leaf(end)
for left_edge in chart.select(
end=right_edge.start(), is_complete=False, nextsym=right_edge.lhs()
):
if _bottomup_filter(grammar, nexttoken, left_edge.rhs(), left_edge.dot()):
new_edge = left_edge.move_dot_forward(right_edge.end())
if chart.insert_with_backpointer(new_edge, left_edge, right_edge):
yield new_edge
def _apply_incomplete(self, chart, grammar, left_edge):
for right_edge in chart.select(
start=left_edge.end(), is_complete=True, lhs=left_edge.nextsym()
):
end = right_edge.end()
nexttoken = end < chart.num_leaves() and chart.leaf(end)
if _bottomup_filter(grammar, nexttoken, left_edge.rhs(), left_edge.dot()):
new_edge = left_edge.move_dot_forward(right_edge.end())
if chart.insert_with_backpointer(new_edge, left_edge, right_edge):
yield new_edge
class FilteredBottomUpPredictCombineRule(BottomUpPredictCombineRule):
def apply(self, chart, grammar, edge):
if edge.is_incomplete():
return
end = edge.end()
nexttoken = end < chart.num_leaves() and chart.leaf(end)
for prod in grammar.productions(rhs=edge.lhs()):
if _bottomup_filter(grammar, nexttoken, prod.rhs()):
new_edge = TreeEdge(edge.span(), prod.lhs(), prod.rhs(), 1)
if chart.insert(new_edge, (edge,)):
yield new_edge
def _bottomup_filter(grammar, nexttoken, rhs, dot=0):
if len(rhs) <= dot + 1:
return True
_next = rhs[dot + 1]
if is_terminal(_next):
return nexttoken == _next
else:
return grammar.is_leftcorner(_next, nexttoken)
########################################################################
## Generic Chart Parser
########################################################################
TD_STRATEGY = [
LeafInitRule(),
TopDownInitRule(),
CachedTopDownPredictRule(),
SingleEdgeFundamentalRule(),
]
BU_STRATEGY = [
LeafInitRule(),
EmptyPredictRule(),
BottomUpPredictRule(),
SingleEdgeFundamentalRule(),
]
BU_LC_STRATEGY = [
LeafInitRule(),
EmptyPredictRule(),
BottomUpPredictCombineRule(),
SingleEdgeFundamentalRule(),
]
LC_STRATEGY = [
LeafInitRule(),
FilteredBottomUpPredictCombineRule(),
FilteredSingleEdgeFundamentalRule(),
]
class ChartParser(ParserI):
"""
A generic chart parser. A "strategy", or list of
``ChartRuleI`` instances, is used to decide what edges to add to
the chart. In particular, ``ChartParser`` uses the following
algorithm to parse texts:
| Until no new edges are added:
| For each *rule* in *strategy*:
| Apply *rule* to any applicable edges in the chart.
| Return any complete parses in the chart
"""
def __init__(
self,
grammar,
strategy=BU_LC_STRATEGY,
trace=0,
trace_chart_width=50,
use_agenda=True,
chart_class=Chart,
):
"""
Create a new chart parser, that uses ``grammar`` to parse
texts.
:type grammar: CFG
:param grammar: The grammar used to parse texts.
:type strategy: list(ChartRuleI)
:param strategy: A list of rules that should be used to decide
what edges to add to the chart (top-down strategy by default).
:type trace: int
:param trace: The level of tracing that should be used when
parsing a text. ``0`` will generate no tracing output;
and higher numbers will produce more verbose tracing
output.
:type trace_chart_width: int
:param trace_chart_width: The default total width reserved for
the chart in trace output. The remainder of each line will
be used to display edges.
:type use_agenda: bool
:param use_agenda: Use an optimized agenda-based algorithm,
if possible.
:param chart_class: The class that should be used to create
the parse charts.
"""
self._grammar = grammar
self._strategy = strategy
self._trace = trace
self._trace_chart_width = trace_chart_width
# If the strategy only consists of axioms (NUM_EDGES==0) and
# inference rules (NUM_EDGES==1), we can use an agenda-based algorithm:
self._use_agenda = use_agenda
self._chart_class = chart_class
self._axioms = []
self._inference_rules = []
for rule in strategy:
if rule.NUM_EDGES == 0:
self._axioms.append(rule)
elif rule.NUM_EDGES == 1:
self._inference_rules.append(rule)
else:
self._use_agenda = False
def grammar(self):
return self._grammar
def _trace_new_edges(self, chart, rule, new_edges, trace, edge_width):
if not trace:
return
print_rule_header = trace > 1
for edge in new_edges:
if print_rule_header:
print("%s:" % rule)
print_rule_header = False
print(chart.pretty_format_edge(edge, edge_width))
def chart_parse(self, tokens, trace=None):
"""
Return the final parse ``Chart`` from which all possible
parse trees can be extracted.
:param tokens: The sentence to be parsed
:type tokens: list(str)
:rtype: Chart
"""
if trace is None:
trace = self._trace
trace_new_edges = self._trace_new_edges
tokens = list(tokens)
self._grammar.check_coverage(tokens)
chart = self._chart_class(tokens)
grammar = self._grammar
# Width, for printing trace edges.
trace_edge_width = self._trace_chart_width // (chart.num_leaves() + 1)
if trace:
print(chart.pretty_format_leaves(trace_edge_width))
if self._use_agenda:
# Use an agenda-based algorithm.
for axiom in self._axioms:
new_edges = list(axiom.apply(chart, grammar))
trace_new_edges(chart, axiom, new_edges, trace, trace_edge_width)
inference_rules = self._inference_rules
agenda = chart.edges()
# We reverse the initial agenda, since it is a stack
# but chart.edges() functions as a queue.
agenda.reverse()
while agenda:
edge = agenda.pop()
for rule in inference_rules:
new_edges = list(rule.apply(chart, grammar, edge))
if trace:
trace_new_edges(chart, rule, new_edges, trace, trace_edge_width)
agenda += new_edges
else:
# Do not use an agenda-based algorithm.
edges_added = True
while edges_added:
edges_added = False
for rule in self._strategy:
new_edges = list(rule.apply_everywhere(chart, grammar))
edges_added = len(new_edges)
trace_new_edges(chart, rule, new_edges, trace, trace_edge_width)
# Return the final chart.
return chart
def parse(self, tokens, tree_class=Tree):
chart = self.chart_parse(tokens)
return iter(chart.parses(self._grammar.start(), tree_class=tree_class))
class TopDownChartParser(ChartParser):
"""
A ``ChartParser`` using a top-down parsing strategy.
See ``ChartParser`` for more information.
"""
def __init__(self, grammar, **parser_args):
ChartParser.__init__(self, grammar, TD_STRATEGY, **parser_args)
class BottomUpChartParser(ChartParser):
"""
A ``ChartParser`` using a bottom-up parsing strategy.
See ``ChartParser`` for more information.
"""
def __init__(self, grammar, **parser_args):
if isinstance(grammar, PCFG):
warnings.warn(
"BottomUpChartParser only works for CFG, "
"use BottomUpProbabilisticChartParser instead",
category=DeprecationWarning,
)
ChartParser.__init__(self, grammar, BU_STRATEGY, **parser_args)
class BottomUpLeftCornerChartParser(ChartParser):
"""
A ``ChartParser`` using a bottom-up left-corner parsing strategy.
This strategy is often more efficient than standard bottom-up.
See ``ChartParser`` for more information.
"""
def __init__(self, grammar, **parser_args):
ChartParser.__init__(self, grammar, BU_LC_STRATEGY, **parser_args)
class LeftCornerChartParser(ChartParser):
def __init__(self, grammar, **parser_args):
if not grammar.is_nonempty():
raise ValueError(
"LeftCornerParser only works for grammars " "without empty productions."
)
ChartParser.__init__(self, grammar, LC_STRATEGY, **parser_args)
########################################################################
## Stepping Chart Parser
########################################################################
class SteppingChartParser(ChartParser):
"""
A ``ChartParser`` that allows you to step through the parsing
process, adding a single edge at a time. It also allows you to
change the parser's strategy or grammar midway through parsing a
text.
The ``initialize`` method is used to start parsing a text. ``step``
adds a single edge to the chart. ``set_strategy`` changes the
strategy used by the chart parser. ``parses`` returns the set of
parses that has been found by the chart parser.
:ivar _restart: Records whether the parser's strategy, grammar,
or chart has been changed. If so, then ``step`` must restart
the parsing algorithm.
"""
def __init__(self, grammar, strategy=[], trace=0):
self._chart = None
self._current_chartrule = None
self._restart = False
ChartParser.__init__(self, grammar, strategy, trace)
# ////////////////////////////////////////////////////////////
# Initialization
# ////////////////////////////////////////////////////////////
def initialize(self, tokens):
"Begin parsing the given tokens."
self._chart = Chart(list(tokens))
self._restart = True
# ////////////////////////////////////////////////////////////
# Stepping
# ////////////////////////////////////////////////////////////
def step(self):
"""
Return a generator that adds edges to the chart, one at a
time. Each time the generator is resumed, it adds a single
edge and yields that edge. If no more edges can be added,
then it yields None.
If the parser's strategy, grammar, or chart is changed, then
the generator will continue adding edges using the new
strategy, grammar, or chart.
Note that this generator never terminates, since the grammar
or strategy might be changed to values that would add new
edges. Instead, it yields None when no more edges can be
added with the current strategy and grammar.
"""
if self._chart is None:
raise ValueError("Parser must be initialized first")
while True:
self._restart = False
w = 50 // (self._chart.num_leaves() + 1)
for e in self._parse():
if self._trace > 1:
print(self._current_chartrule)
if self._trace > 0:
print(self._chart.pretty_format_edge(e, w))
yield e
if self._restart:
break
else:
yield None # No more edges.
def _parse(self):
"""
A generator that implements the actual parsing algorithm.
``step`` iterates through this generator, and restarts it
whenever the parser's strategy, grammar, or chart is modified.
"""
chart = self._chart
grammar = self._grammar
edges_added = 1
while edges_added > 0:
edges_added = 0
for rule in self._strategy:
self._current_chartrule = rule
for e in rule.apply_everywhere(chart, grammar):
edges_added += 1
yield e
# ////////////////////////////////////////////////////////////
# Accessors
# ////////////////////////////////////////////////////////////
def strategy(self):
"Return the strategy used by this parser."
return self._strategy
def grammar(self):
"Return the grammar used by this parser."
return self._grammar
def chart(self):
"Return the chart that is used by this parser."
return self._chart
def current_chartrule(self):
"Return the chart rule used to generate the most recent edge."
return self._current_chartrule
def parses(self, tree_class=Tree):
"Return the parse trees currently contained in the chart."
return self._chart.parses(self._grammar.start(), tree_class)
# ////////////////////////////////////////////////////////////
# Parser modification
# ////////////////////////////////////////////////////////////
def set_strategy(self, strategy):
"""
Change the strategy that the parser uses to decide which edges
to add to the chart.
:type strategy: list(ChartRuleI)
:param strategy: A list of rules that should be used to decide
what edges to add to the chart.
"""
if strategy == self._strategy:
return
self._strategy = strategy[:] # Make a copy.
self._restart = True
def set_grammar(self, grammar):
"Change the grammar used by the parser."
if grammar is self._grammar:
return
self._grammar = grammar
self._restart = True
def set_chart(self, chart):
"Load a given chart into the chart parser."
if chart is self._chart:
return
self._chart = chart
self._restart = True
# ////////////////////////////////////////////////////////////
# Standard parser methods
# ////////////////////////////////////////////////////////////
def parse(self, tokens, tree_class=Tree):
tokens = list(tokens)
self._grammar.check_coverage(tokens)
# Initialize ourselves.
self.initialize(tokens)
# Step until no more edges are generated.
for e in self.step():
if e is None:
break
# Return an iterator of complete parses.
return self.parses(tree_class=tree_class)
########################################################################
## Demo Code
########################################################################
def demo_grammar():
from nltk.grammar import CFG
return CFG.fromstring(
"""
S -> NP VP
PP -> "with" NP
NP -> NP PP
VP -> VP PP
VP -> Verb NP
VP -> Verb
NP -> Det Noun
NP -> "John"
NP -> "I"
Det -> "the"
Det -> "my"
Det -> "a"
Noun -> "dog"
Noun -> "cookie"
Verb -> "ate"
Verb -> "saw"
Prep -> "with"
Prep -> "under"
"""
)
def demo(
choice=None,
print_times=True,
print_grammar=False,
print_trees=True,
trace=2,
sent="I saw John with a dog with my cookie",
numparses=5,
):
"""
A demonstration of the chart parsers.
"""
import sys
import time
from nltk import CFG, Production, nonterminals
# The grammar for ChartParser and SteppingChartParser:
grammar = demo_grammar()
if print_grammar:
print("* Grammar")
print(grammar)
# Tokenize the sample sentence.
print("* Sentence:")
print(sent)
tokens = sent.split()
print(tokens)
print()
# Ask the user which parser to test,
# if the parser wasn't provided as an argument
if choice is None:
print(" 1: Top-down chart parser")
print(" 2: Bottom-up chart parser")
print(" 3: Bottom-up left-corner chart parser")
print(" 4: Left-corner chart parser with bottom-up filter")
print(" 5: Stepping chart parser (alternating top-down & bottom-up)")
print(" 6: All parsers")
print("\nWhich parser (1-6)? ", end=" ")
choice = sys.stdin.readline().strip()
print()
choice = str(choice)
if choice not in "123456":
print("Bad parser number")
return
# Keep track of how long each parser takes.
times = {}
strategies = {
"1": ("Top-down", TD_STRATEGY),
"2": ("Bottom-up", BU_STRATEGY),
"3": ("Bottom-up left-corner", BU_LC_STRATEGY),
"4": ("Filtered left-corner", LC_STRATEGY),
}
choices = []
if choice in strategies:
choices = [choice]
if choice == "6":
choices = "1234"
# Run the requested chart parser(s), except the stepping parser.
for strategy in choices:
print("* Strategy: " + strategies[strategy][0])
print()
cp = ChartParser(grammar, strategies[strategy][1], trace=trace)
t = time.time()
chart = cp.chart_parse(tokens)
parses = list(chart.parses(grammar.start()))
times[strategies[strategy][0]] = time.time() - t
print("Nr edges in chart:", len(chart.edges()))
if numparses:
assert len(parses) == numparses, "Not all parses found"
if print_trees:
for tree in parses:
print(tree)
else:
print("Nr trees:", len(parses))
print()
# Run the stepping parser, if requested.
if choice in "56":
print("* Strategy: Stepping (top-down vs bottom-up)")
print()
t = time.time()
cp = SteppingChartParser(grammar, trace=trace)
cp.initialize(tokens)
for i in range(5):
print("*** SWITCH TO TOP DOWN")
cp.set_strategy(TD_STRATEGY)
for j, e in enumerate(cp.step()):
if j > 20 or e is None:
break
print("*** SWITCH TO BOTTOM UP")
cp.set_strategy(BU_STRATEGY)
for j, e in enumerate(cp.step()):
if j > 20 or e is None:
break
times["Stepping"] = time.time() - t
print("Nr edges in chart:", len(cp.chart().edges()))
if numparses:
assert len(list(cp.parses())) == numparses, "Not all parses found"
if print_trees:
for tree in cp.parses():
print(tree)
else:
print("Nr trees:", len(list(cp.parses())))
print()
# Print the times of all parsers:
if not (print_times and times):
return
print("* Parsing times")
print()
maxlen = max(len(key) for key in times)
format = "%" + repr(maxlen) + "s parser: %6.3fsec"
times_items = times.items()
for (parser, t) in sorted(times_items, key=lambda a: a[1]):
print(format % (parser, t))
if __name__ == "__main__":
demo()
|