File size: 5,204 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
from nltk.translate.ribes_score import corpus_ribes, word_rank_alignment


def test_ribes_empty_worder():  # worder as in word order
    # Verifies that these two sentences have no alignment,
    # and hence have the lowest possible RIBES score.
    hyp = "This is a nice sentence which I quite like".split()
    ref = "Okay well that's neat and all but the reference's different".split()

    assert word_rank_alignment(ref, hyp) == []

    list_of_refs = [[ref]]
    hypotheses = [hyp]
    assert corpus_ribes(list_of_refs, hypotheses) == 0.0


def test_ribes_one_worder():
    # Verifies that these two sentences have just one match,
    # and the RIBES score for this sentence with very little
    # correspondence is 0.
    hyp = "This is a nice sentence which I quite like".split()
    ref = "Okay well that's nice and all but the reference's different".split()

    assert word_rank_alignment(ref, hyp) == [3]

    list_of_refs = [[ref]]
    hypotheses = [hyp]
    assert corpus_ribes(list_of_refs, hypotheses) == 0.0


def test_ribes_two_worder():
    # Verifies that these two sentences have two matches,
    # but still get the lowest possible RIBES score due
    # to the lack of similarity.
    hyp = "This is a nice sentence which I quite like".split()
    ref = "Okay well that's nice and all but the reference is different".split()

    assert word_rank_alignment(ref, hyp) == [9, 3]

    list_of_refs = [[ref]]
    hypotheses = [hyp]
    assert corpus_ribes(list_of_refs, hypotheses) == 0.0


def test_ribes():
    # Based on the doctest of the corpus_ribes function
    hyp1 = [
        "It",
        "is",
        "a",
        "guide",
        "to",
        "action",
        "which",
        "ensures",
        "that",
        "the",
        "military",
        "always",
        "obeys",
        "the",
        "commands",
        "of",
        "the",
        "party",
    ]
    ref1a = [
        "It",
        "is",
        "a",
        "guide",
        "to",
        "action",
        "that",
        "ensures",
        "that",
        "the",
        "military",
        "will",
        "forever",
        "heed",
        "Party",
        "commands",
    ]
    ref1b = [
        "It",
        "is",
        "the",
        "guiding",
        "principle",
        "which",
        "guarantees",
        "the",
        "military",
        "forces",
        "always",
        "being",
        "under",
        "the",
        "command",
        "of",
        "the",
        "Party",
    ]
    ref1c = [
        "It",
        "is",
        "the",
        "practical",
        "guide",
        "for",
        "the",
        "army",
        "always",
        "to",
        "heed",
        "the",
        "directions",
        "of",
        "the",
        "party",
    ]

    hyp2 = [
        "he",
        "read",
        "the",
        "book",
        "because",
        "he",
        "was",
        "interested",
        "in",
        "world",
        "history",
    ]
    ref2a = [
        "he",
        "was",
        "interested",
        "in",
        "world",
        "history",
        "because",
        "he",
        "read",
        "the",
        "book",
    ]

    list_of_refs = [[ref1a, ref1b, ref1c], [ref2a]]
    hypotheses = [hyp1, hyp2]

    score = corpus_ribes(list_of_refs, hypotheses)

    assert round(score, 4) == 0.3597


def test_no_zero_div():
    # Regression test for Issue 2529, assure that no ZeroDivisionError is thrown.
    hyp1 = [
        "It",
        "is",
        "a",
        "guide",
        "to",
        "action",
        "which",
        "ensures",
        "that",
        "the",
        "military",
        "always",
        "obeys",
        "the",
        "commands",
        "of",
        "the",
        "party",
    ]
    ref1a = [
        "It",
        "is",
        "a",
        "guide",
        "to",
        "action",
        "that",
        "ensures",
        "that",
        "the",
        "military",
        "will",
        "forever",
        "heed",
        "Party",
        "commands",
    ]
    ref1b = [
        "It",
        "is",
        "the",
        "guiding",
        "principle",
        "which",
        "guarantees",
        "the",
        "military",
        "forces",
        "always",
        "being",
        "under",
        "the",
        "command",
        "of",
        "the",
        "Party",
    ]
    ref1c = [
        "It",
        "is",
        "the",
        "practical",
        "guide",
        "for",
        "the",
        "army",
        "always",
        "to",
        "heed",
        "the",
        "directions",
        "of",
        "the",
        "party",
    ]

    hyp2 = ["he", "read", "the"]
    ref2a = ["he", "was", "interested", "in", "world", "history", "because", "he"]

    list_of_refs = [[ref1a, ref1b, ref1c], [ref2a]]
    hypotheses = [hyp1, hyp2]

    score = corpus_ribes(list_of_refs, hypotheses)

    assert round(score, 4) == 0.1688