File size: 30,921 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
"""

Unit tests for nltk.tokenize.

See also nltk/test/tokenize.doctest

"""
from typing import List, Tuple

import pytest

from nltk.tokenize import (
    LegalitySyllableTokenizer,
    StanfordSegmenter,
    SyllableTokenizer,
    TreebankWordTokenizer,
    TweetTokenizer,
    punkt,
    sent_tokenize,
    word_tokenize,
)


def load_stanford_segmenter():
    try:
        seg = StanfordSegmenter()
        seg.default_config("ar")
        seg.default_config("zh")
        return True
    except LookupError:
        return False


check_stanford_segmenter = pytest.mark.skipif(
    not load_stanford_segmenter(),
    reason="NLTK was unable to find stanford-segmenter.jar.",
)


class TestTokenize:
    def test_tweet_tokenizer(self):
        """

        Test TweetTokenizer using words with special and accented characters.

        """

        tokenizer = TweetTokenizer(strip_handles=True, reduce_len=True)
        s9 = "@myke: Let's test these words: resumé España München français"
        tokens = tokenizer.tokenize(s9)
        expected = [
            ":",
            "Let's",
            "test",
            "these",
            "words",
            ":",
            "resumé",
            "España",
            "München",
            "français",
        ]
        assert tokens == expected

    @pytest.mark.parametrize(

        "test_input, expecteds",

        [

            (

                "My text 0106404243030 is great text",

                (

                    ["My", "text", "01064042430", "30", "is", "great", "text"],

                    ["My", "text", "0106404243030", "is", "great", "text"],

                ),

            ),

            (

                "My ticket id is 1234543124123",

                (

                    ["My", "ticket", "id", "is", "12345431241", "23"],

                    ["My", "ticket", "id", "is", "1234543124123"],

                ),

            ),

            (

                "@remy: This is waaaaayyyy too much for you!!!!!! 01064042430",

                (

                    [

                        ":",

                        "This",

                        "is",

                        "waaayyy",

                        "too",

                        "much",

                        "for",

                        "you",

                        "!",

                        "!",

                        "!",

                        "01064042430",

                    ],

                    [

                        ":",

                        "This",

                        "is",

                        "waaayyy",

                        "too",

                        "much",

                        "for",

                        "you",

                        "!",

                        "!",

                        "!",

                        "01064042430",

                    ],

                ),

            ),

            # Further tests from https://github.com/nltk/nltk/pull/2798#issuecomment-922533085,

            # showing the TweetTokenizer performance for `match_phone_numbers=True` and

            # `match_phone_numbers=False`.

            (

                # Some phone numbers are always tokenized, even with `match_phone_numbers=`False`

                "My number is 06-46124080, except it's not.",

                (

                    [

                        "My",

                        "number",

                        "is",

                        "06-46124080",

                        ",",

                        "except",

                        "it's",

                        "not",

                        ".",

                    ],

                    [

                        "My",

                        "number",

                        "is",

                        "06-46124080",

                        ",",

                        "except",

                        "it's",

                        "not",

                        ".",

                    ],

                ),

            ),

            (

                # Phone number here is only tokenized correctly if `match_phone_numbers=True`

                "My number is 601-984-4813, except it's not.",

                (

                    [

                        "My",

                        "number",

                        "is",

                        "601-984-4813",

                        ",",

                        "except",

                        "it's",

                        "not",

                        ".",

                    ],

                    [

                        "My",

                        "number",

                        "is",

                        "601-984-",

                        "4813",

                        ",",

                        "except",

                        "it's",

                        "not",

                        ".",

                    ],

                ),

            ),

            (

                # Phone number here is only tokenized correctly if `match_phone_numbers=True`

                "My number is (393)  928 -3010, except it's not.",

                (

                    [

                        "My",

                        "number",

                        "is",

                        "(393)  928 -3010",

                        ",",

                        "except",

                        "it's",

                        "not",

                        ".",

                    ],

                    [

                        "My",

                        "number",

                        "is",

                        "(",

                        "393",

                        ")",

                        "928",

                        "-",

                        "3010",

                        ",",

                        "except",

                        "it's",

                        "not",

                        ".",

                    ],

                ),

            ),

            (

                # A long number is tokenized correctly only if `match_phone_numbers=False`

                "The product identification number is 48103284512.",

                (

                    [

                        "The",

                        "product",

                        "identification",

                        "number",

                        "is",

                        "4810328451",

                        "2",

                        ".",

                    ],

                    [

                        "The",

                        "product",

                        "identification",

                        "number",

                        "is",

                        "48103284512",

                        ".",

                    ],

                ),

            ),

            (

                # `match_phone_numbers=True` can have some unforeseen

                "My favourite substraction is 240 - 1353.",

                (

                    ["My", "favourite", "substraction", "is", "240 - 1353", "."],

                    ["My", "favourite", "substraction", "is", "240", "-", "1353", "."],

                ),

            ),

        ],

    )
    def test_tweet_tokenizer_expanded(

        self, test_input: str, expecteds: Tuple[List[str], List[str]]

    ):
        """

        Test `match_phone_numbers` in TweetTokenizer.



        Note that TweetTokenizer is also passed the following for these tests:

            * strip_handles=True

            * reduce_len=True



        :param test_input: The input string to tokenize using TweetTokenizer.

        :type test_input: str

        :param expecteds: A 2-tuple of tokenized sentences. The first of the two

            tokenized is the expected output of tokenization with `match_phone_numbers=True`.

            The second of the two tokenized lists is the expected output of tokenization

            with `match_phone_numbers=False`.

        :type expecteds: Tuple[List[str], List[str]]

        """
        for match_phone_numbers, expected in zip([True, False], expecteds):
            tokenizer = TweetTokenizer(
                strip_handles=True,
                reduce_len=True,
                match_phone_numbers=match_phone_numbers,
            )
            predicted = tokenizer.tokenize(test_input)
            assert predicted == expected

    def test_sonority_sequencing_syllable_tokenizer(self):
        """

        Test SyllableTokenizer tokenizer.

        """
        tokenizer = SyllableTokenizer()
        tokens = tokenizer.tokenize("justification")
        assert tokens == ["jus", "ti", "fi", "ca", "tion"]

    def test_syllable_tokenizer_numbers(self):
        """

        Test SyllableTokenizer tokenizer.

        """
        tokenizer = SyllableTokenizer()
        text = "9" * 10000
        tokens = tokenizer.tokenize(text)
        assert tokens == [text]

    def test_legality_principle_syllable_tokenizer(self):
        """

        Test LegalitySyllableTokenizer tokenizer.

        """
        from nltk.corpus import words

        test_word = "wonderful"
        tokenizer = LegalitySyllableTokenizer(words.words())
        tokens = tokenizer.tokenize(test_word)
        assert tokens == ["won", "der", "ful"]

    @check_stanford_segmenter
    def test_stanford_segmenter_arabic(self):
        """

        Test the Stanford Word Segmenter for Arabic (default config)

        """
        seg = StanfordSegmenter()
        seg.default_config("ar")
        sent = "يبحث علم الحاسوب استخدام الحوسبة بجميع اشكالها لحل المشكلات"
        segmented_sent = seg.segment(sent.split())
        assert segmented_sent.split() == [
            "يبحث",
            "علم",
            "الحاسوب",
            "استخدام",
            "الحوسبة",
            "ب",
            "جميع",
            "اشكال",
            "ها",
            "ل",
            "حل",
            "المشكلات",
        ]

    @check_stanford_segmenter
    def test_stanford_segmenter_chinese(self):
        """

        Test the Stanford Word Segmenter for Chinese (default config)

        """
        seg = StanfordSegmenter()
        seg.default_config("zh")
        sent = "这是斯坦福中文分词器测试"
        segmented_sent = seg.segment(sent.split())
        assert segmented_sent.split() == ["这", "是", "斯坦福", "中文", "分词器", "测试"]

    def test_phone_tokenizer(self):
        """

        Test a string that resembles a phone number but contains a newline

        """

        # Should be recognized as a phone number, albeit one with multiple spaces
        tokenizer = TweetTokenizer()
        test1 = "(393)  928 -3010"
        expected = ["(393)  928 -3010"]
        result = tokenizer.tokenize(test1)
        assert result == expected

        # Due to newline, first three elements aren't part of a phone number;
        # fourth is
        test2 = "(393)\n928 -3010"
        expected = ["(", "393", ")", "928 -3010"]
        result = tokenizer.tokenize(test2)
        assert result == expected

    def test_emoji_tokenizer(self):
        """

        Test a string that contains Emoji ZWJ Sequences and skin tone modifier

        """
        tokenizer = TweetTokenizer()

        # A Emoji ZWJ Sequences, they together build as a single emoji, should not be split.
        test1 = "👨‍👩‍👧‍👧"
        expected = ["👨‍👩‍👧‍👧"]
        result = tokenizer.tokenize(test1)
        assert result == expected

        # A Emoji with skin tone modifier, the two characters build a single emoji, should not be split.
        test2 = "👨🏿"
        expected = ["👨🏿"]
        result = tokenizer.tokenize(test2)
        assert result == expected

        # A string containing both skin tone modifier and ZWJ Sequences
        test3 = "🤔 🙈 me así, se😌 ds 💕👭👙 hello 👩🏾‍🎓 emoji hello 👨‍👩‍👦‍👦 how are 😊 you today🙅🏽🙅🏽"
        expected = [
            "🤔",
            "🙈",
            "me",
            "así",
            ",",
            "se",
            "😌",
            "ds",
            "💕",
            "👭",
            "👙",
            "hello",
            "👩🏾\u200d🎓",
            "emoji",
            "hello",
            "👨\u200d👩\u200d👦\u200d👦",
            "how",
            "are",
            "😊",
            "you",
            "today",
            "🙅🏽",
            "🙅🏽",
        ]
        result = tokenizer.tokenize(test3)
        assert result == expected

        # emoji flag sequences, including enclosed letter pairs
        # Expected behavior from #3034
        test4 = "🇦🇵🇵🇱🇪"
        expected = ["🇦🇵", "🇵🇱", "🇪"]
        result = tokenizer.tokenize(test4)
        assert result == expected

        test5 = "Hi 🇨🇦, 😍!!"
        expected = ["Hi", "🇨🇦", ",", "😍", "!", "!"]
        result = tokenizer.tokenize(test5)
        assert result == expected

        test6 = "<3 🇨🇦 🤝 🇵🇱 <3"
        expected = ["<3", "🇨🇦", "🤝", "🇵🇱", "<3"]
        result = tokenizer.tokenize(test6)
        assert result == expected

    def test_pad_asterisk(self):
        """

        Test padding of asterisk for word tokenization.

        """
        text = "This is a, *weird sentence with *asterisks in it."
        expected = [
            "This",
            "is",
            "a",
            ",",
            "*",
            "weird",
            "sentence",
            "with",
            "*",
            "asterisks",
            "in",
            "it",
            ".",
        ]
        assert word_tokenize(text) == expected

    def test_pad_dotdot(self):
        """

        Test padding of dotdot* for word tokenization.

        """
        text = "Why did dotdot.. not get tokenized but dotdotdot... did? How about manydots....."
        expected = [
            "Why",
            "did",
            "dotdot",
            "..",
            "not",
            "get",
            "tokenized",
            "but",
            "dotdotdot",
            "...",
            "did",
            "?",
            "How",
            "about",
            "manydots",
            ".....",
        ]
        assert word_tokenize(text) == expected

    def test_remove_handle(self):
        """

        Test remove_handle() from casual.py with specially crafted edge cases

        """

        tokenizer = TweetTokenizer(strip_handles=True)

        # Simple example. Handles with just numbers should be allowed
        test1 = "@twitter hello @twi_tter_. hi @12345 @123news"
        expected = ["hello", ".", "hi"]
        result = tokenizer.tokenize(test1)
        assert result == expected

        # Handles are allowed to follow any of the following characters
        test2 = "@n`@n~@n(@n)@n-@n=@n+@n\\@n|@n[@n]@n{@n}@n;@n:@n'@n\"@n/@n?@n.@n,@n<@n>@n @n\n@n ñ@n.ü@n.ç@n."
        expected = [
            "`",
            "~",
            "(",
            ")",
            "-",
            "=",
            "+",
            "\\",
            "|",
            "[",
            "]",
            "{",
            "}",
            ";",
            ":",
            "'",
            '"',
            "/",
            "?",
            ".",
            ",",
            "<",
            ">",
            "ñ",
            ".",
            "ü",
            ".",
            "ç",
            ".",
        ]
        result = tokenizer.tokenize(test2)
        assert result == expected

        # Handles are NOT allowed to follow any of the following characters
        test3 = "a@n j@n z@n A@n L@n Z@n 1@n 4@n 7@n 9@n 0@n _@n !@n @@n #@n $@n %@n &@n *@n"
        expected = [
            "a",
            "@n",
            "j",
            "@n",
            "z",
            "@n",
            "A",
            "@n",
            "L",
            "@n",
            "Z",
            "@n",
            "1",
            "@n",
            "4",
            "@n",
            "7",
            "@n",
            "9",
            "@n",
            "0",
            "@n",
            "_",
            "@n",
            "!",
            "@n",
            "@",
            "@n",
            "#",
            "@n",
            "$",
            "@n",
            "%",
            "@n",
            "&",
            "@n",
            "*",
            "@n",
        ]
        result = tokenizer.tokenize(test3)
        assert result == expected

        # Handles are allowed to precede the following characters
        test4 = "@n!a @n#a @n$a @n%a @n&a @n*a"
        expected = ["!", "a", "#", "a", "$", "a", "%", "a", "&", "a", "*", "a"]
        result = tokenizer.tokenize(test4)
        assert result == expected

        # Tests interactions with special symbols and multiple @
        test5 = "@n!@n @n#@n @n$@n @n%@n @n&@n @n*@n @n@n @@n @n@@n @n_@n @n7@n @nj@n"
        expected = [
            "!",
            "@n",
            "#",
            "@n",
            "$",
            "@n",
            "%",
            "@n",
            "&",
            "@n",
            "*",
            "@n",
            "@n",
            "@n",
            "@",
            "@n",
            "@n",
            "@",
            "@n",
            "@n_",
            "@n",
            "@n7",
            "@n",
            "@nj",
            "@n",
        ]
        result = tokenizer.tokenize(test5)
        assert result == expected

        # Tests that handles can have a max length of 15
        test6 = "@abcdefghijklmnopqrstuvwxyz @abcdefghijklmno1234 @abcdefghijklmno_ @abcdefghijklmnoendofhandle"
        expected = ["pqrstuvwxyz", "1234", "_", "endofhandle"]
        result = tokenizer.tokenize(test6)
        assert result == expected

        # Edge case where an @ comes directly after a long handle
        test7 = "@abcdefghijklmnop@abcde @abcdefghijklmno@abcde @abcdefghijklmno_@abcde @abcdefghijklmno5@abcde"
        expected = [
            "p",
            "@abcde",
            "@abcdefghijklmno",
            "@abcde",
            "_",
            "@abcde",
            "5",
            "@abcde",
        ]
        result = tokenizer.tokenize(test7)
        assert result == expected

    def test_treebank_span_tokenizer(self):
        """

        Test TreebankWordTokenizer.span_tokenize function

        """

        tokenizer = TreebankWordTokenizer()

        # Test case in the docstring
        test1 = "Good muffins cost $3.88\nin New (York).  Please (buy) me\ntwo of them.\n(Thanks)."
        expected = [
            (0, 4),
            (5, 12),
            (13, 17),
            (18, 19),
            (19, 23),
            (24, 26),
            (27, 30),
            (31, 32),
            (32, 36),
            (36, 37),
            (37, 38),
            (40, 46),
            (47, 48),
            (48, 51),
            (51, 52),
            (53, 55),
            (56, 59),
            (60, 62),
            (63, 68),
            (69, 70),
            (70, 76),
            (76, 77),
            (77, 78),
        ]
        result = list(tokenizer.span_tokenize(test1))
        assert result == expected

        # Test case with double quotation
        test2 = 'The DUP is similar to the "religious right" in the United States and takes a hardline stance on social issues'
        expected = [
            (0, 3),
            (4, 7),
            (8, 10),
            (11, 18),
            (19, 21),
            (22, 25),
            (26, 27),
            (27, 36),
            (37, 42),
            (42, 43),
            (44, 46),
            (47, 50),
            (51, 57),
            (58, 64),
            (65, 68),
            (69, 74),
            (75, 76),
            (77, 85),
            (86, 92),
            (93, 95),
            (96, 102),
            (103, 109),
        ]
        result = list(tokenizer.span_tokenize(test2))
        assert result == expected

        # Test case with double qoutation as well as converted quotations
        test3 = "The DUP is similar to the \"religious right\" in the United States and takes a ``hardline'' stance on social issues"
        expected = [
            (0, 3),
            (4, 7),
            (8, 10),
            (11, 18),
            (19, 21),
            (22, 25),
            (26, 27),
            (27, 36),
            (37, 42),
            (42, 43),
            (44, 46),
            (47, 50),
            (51, 57),
            (58, 64),
            (65, 68),
            (69, 74),
            (75, 76),
            (77, 79),
            (79, 87),
            (87, 89),
            (90, 96),
            (97, 99),
            (100, 106),
            (107, 113),
        ]
        result = list(tokenizer.span_tokenize(test3))
        assert result == expected

    def test_word_tokenize(self):
        """

        Test word_tokenize function

        """

        sentence = "The 'v', I've been fooled but I'll seek revenge."
        expected = [
            "The",
            "'",
            "v",
            "'",
            ",",
            "I",
            "'ve",
            "been",
            "fooled",
            "but",
            "I",
            "'ll",
            "seek",
            "revenge",
            ".",
        ]
        assert word_tokenize(sentence) == expected

        sentence = "'v' 're'"
        expected = ["'", "v", "'", "'re", "'"]
        assert word_tokenize(sentence) == expected

    def test_punkt_pair_iter(self):

        test_cases = [
            ("12", [("1", "2"), ("2", None)]),
            ("123", [("1", "2"), ("2", "3"), ("3", None)]),
            ("1234", [("1", "2"), ("2", "3"), ("3", "4"), ("4", None)]),
        ]

        for (test_input, expected_output) in test_cases:
            actual_output = [x for x in punkt._pair_iter(test_input)]

            assert actual_output == expected_output

    def test_punkt_pair_iter_handles_stop_iteration_exception(self):
        # test input to trigger StopIteration from next()
        it = iter([])
        # call method under test and produce a generator
        gen = punkt._pair_iter(it)
        # unpack generator, ensure that no error is raised
        list(gen)

    def test_punkt_tokenize_words_handles_stop_iteration_exception(self):
        obj = punkt.PunktBaseClass()

        class TestPunktTokenizeWordsMock:
            def word_tokenize(self, s):
                return iter([])

        obj._lang_vars = TestPunktTokenizeWordsMock()
        # unpack generator, ensure that no error is raised
        list(obj._tokenize_words("test"))

    def test_punkt_tokenize_custom_lang_vars(self):

        # Create LangVars including a full stop end character as used in Bengali
        class BengaliLanguageVars(punkt.PunktLanguageVars):
            sent_end_chars = (".", "?", "!", "\u0964")

        obj = punkt.PunktSentenceTokenizer(lang_vars=BengaliLanguageVars())

        # We now expect these sentences to be split up into the individual sentences
        sentences = "উপরাষ্ট্রপতি শ্রী এম ভেঙ্কাইয়া নাইডু সোমবার আই আই টি দিল্লির হীরক জয়ন্তী উদযাপনের উদ্বোধন করেছেন। অনলাইনের মাধ্যমে এই অনুষ্ঠানে কেন্দ্রীয় মানব সম্পদ উন্নয়নমন্ত্রী শ্রী রমেশ পোখরিয়াল ‘নিশাঙ্ক’  উপস্থিত ছিলেন। এই উপলক্ষ্যে উপরাষ্ট্রপতি হীরকজয়ন্তীর লোগো এবং ২০৩০-এর জন্য প্রতিষ্ঠানের লক্ষ্য ও পরিকল্পনার নথি প্রকাশ করেছেন।"
        expected = [
            "উপরাষ্ট্রপতি শ্রী এম ভেঙ্কাইয়া নাইডু সোমবার আই আই টি দিল্লির হীরক জয়ন্তী উদযাপনের উদ্বোধন করেছেন।",
            "অনলাইনের মাধ্যমে এই অনুষ্ঠানে কেন্দ্রীয় মানব সম্পদ উন্নয়নমন্ত্রী শ্রী রমেশ পোখরিয়াল ‘নিশাঙ্ক’  উপস্থিত ছিলেন।",
            "এই উপলক্ষ্যে উপরাষ্ট্রপতি হীরকজয়ন্তীর লোগো এবং ২০৩০-এর জন্য প্রতিষ্ঠানের লক্ষ্য ও পরিকল্পনার নথি প্রকাশ করেছেন।",
        ]

        assert obj.tokenize(sentences) == expected

    def test_punkt_tokenize_no_custom_lang_vars(self):

        obj = punkt.PunktSentenceTokenizer()

        # We expect these sentences to not be split properly, as the Bengali full stop '।' is not included in the default language vars
        sentences = "উপরাষ্ট্রপতি শ্রী এম ভেঙ্কাইয়া নাইডু সোমবার আই আই টি দিল্লির হীরক জয়ন্তী উদযাপনের উদ্বোধন করেছেন। অনলাইনের মাধ্যমে এই অনুষ্ঠানে কেন্দ্রীয় মানব সম্পদ উন্নয়নমন্ত্রী শ্রী রমেশ পোখরিয়াল ‘নিশাঙ্ক’  উপস্থিত ছিলেন। এই উপলক্ষ্যে উপরাষ্ট্রপতি হীরকজয়ন্তীর লোগো এবং ২০৩০-এর জন্য প্রতিষ্ঠানের লক্ষ্য ও পরিকল্পনার নথি প্রকাশ করেছেন।"
        expected = [
            "উপরাষ্ট্রপতি শ্রী এম ভেঙ্কাইয়া নাইডু সোমবার আই আই টি দিল্লির হীরক জয়ন্তী উদযাপনের উদ্বোধন করেছেন। অনলাইনের মাধ্যমে এই অনুষ্ঠানে কেন্দ্রীয় মানব সম্পদ উন্নয়নমন্ত্রী শ্রী রমেশ পোখরিয়াল ‘নিশাঙ্ক’  উপস্থিত ছিলেন। এই উপলক্ষ্যে উপরাষ্ট্রপতি হীরকজয়ন্তীর লোগো এবং ২০৩০-এর জন্য প্রতিষ্ঠানের লক্ষ্য ও পরিকল্পনার নথি প্রকাশ করেছেন।"
        ]

        assert obj.tokenize(sentences) == expected

    @pytest.mark.parametrize(

        "input_text,n_sents,n_splits,lang_vars",

        [

            # Test debug_decisions on a text with two sentences, split by a dot.

            ("Subject: Some subject. Attachments: Some attachments", 2, 1),

            # The sentence should be split into two sections,

            # with one split and hence one decision.

            # Test debug_decisions on a text with two sentences, split by an exclamation mark.

            ("Subject: Some subject! Attachments: Some attachments", 2, 1),

            # The sentence should be split into two sections,

            # with one split and hence one decision.

            # Test debug_decisions on a text with one sentences,

            # which is not split.

            ("This is just a normal sentence, just like any other.", 1, 0)

            # Hence just 1

        ],

    )
    def punkt_debug_decisions(self, input_text, n_sents, n_splits, lang_vars=None):
        tokenizer = punkt.PunktSentenceTokenizer()
        if lang_vars != None:
            tokenizer._lang_vars = lang_vars

        assert len(tokenizer.tokenize(input_text)) == n_sents
        assert len(list(tokenizer.debug_decisions(input_text))) == n_splits

    def test_punkt_debug_decisions_custom_end(self):
        # Test debug_decisions on a text with two sentences,
        # split by a custom end character, based on Issue #2519
        class ExtLangVars(punkt.PunktLanguageVars):
            sent_end_chars = (".", "?", "!", "^")

        self.punkt_debug_decisions(
            "Subject: Some subject^ Attachments: Some attachments",
            n_sents=2,
            n_splits=1,
            lang_vars=ExtLangVars(),
        )
        # The sentence should be split into two sections,
        # with one split and hence one decision.

    @pytest.mark.parametrize(

        "sentences, expected",

        [

            (

                "this is a test. . new sentence.",

                ["this is a test.", ".", "new sentence."],

            ),

            ("This. . . That", ["This.", ".", ".", "That"]),

            ("This..... That", ["This..... That"]),

            ("This... That", ["This... That"]),

            ("This.. . That", ["This.. .", "That"]),

            ("This. .. That", ["This.", ".. That"]),

            ("This. ,. That", ["This.", ",.", "That"]),

            ("This!!! That", ["This!!!", "That"]),

            ("This! That", ["This!", "That"]),

            (

                "1. This is R .\n2. This is A .\n3. That's all",

                ["1.", "This is R .", "2.", "This is A .", "3.", "That's all"],

            ),

            (

                "1. This is R .\t2. This is A .\t3. That's all",

                ["1.", "This is R .", "2.", "This is A .", "3.", "That's all"],

            ),

            ("Hello.\tThere", ["Hello.", "There"]),

        ],

    )
    def test_sent_tokenize(self, sentences: str, expected: List[str]):
        assert sent_tokenize(sentences) == expected