Spaces:
Sleeping
Sleeping
File size: 15,874 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
"""
Tests for BLEU translation evaluation metric
"""
import io
import unittest
from nltk.data import find
from nltk.translate.bleu_score import (
SmoothingFunction,
brevity_penalty,
closest_ref_length,
corpus_bleu,
modified_precision,
sentence_bleu,
)
class TestBLEU(unittest.TestCase):
def test_modified_precision(self):
"""
Examples from the original BLEU paper
https://www.aclweb.org/anthology/P02-1040.pdf
"""
# Example 1: the "the*" example.
# Reference sentences.
ref1 = "the cat is on the mat".split()
ref2 = "there is a cat on the mat".split()
# Hypothesis sentence(s).
hyp1 = "the the the the the the the".split()
references = [ref1, ref2]
# Testing modified unigram precision.
hyp1_unigram_precision = float(modified_precision(references, hyp1, n=1))
assert round(hyp1_unigram_precision, 4) == 0.2857
# With assertAlmostEqual at 4 place precision.
self.assertAlmostEqual(hyp1_unigram_precision, 0.28571428, places=4)
# Testing modified bigram precision.
assert float(modified_precision(references, hyp1, n=2)) == 0.0
# Example 2: the "of the" example.
# Reference sentences
ref1 = str(
"It is a guide to action that ensures that the military "
"will forever heed Party commands"
).split()
ref2 = str(
"It is the guiding principle which guarantees the military "
"forces always being under the command of the Party"
).split()
ref3 = str(
"It is the practical guide for the army always to heed "
"the directions of the party"
).split()
# Hypothesis sentence(s).
hyp1 = "of the".split()
references = [ref1, ref2, ref3]
# Testing modified unigram precision.
assert float(modified_precision(references, hyp1, n=1)) == 1.0
# Testing modified bigram precision.
assert float(modified_precision(references, hyp1, n=2)) == 1.0
# Example 3: Proper MT outputs.
hyp1 = str(
"It is a guide to action which ensures that the military "
"always obeys the commands of the party"
).split()
hyp2 = str(
"It is to insure the troops forever hearing the activity "
"guidebook that party direct"
).split()
references = [ref1, ref2, ref3]
# Unigram precision.
hyp1_unigram_precision = float(modified_precision(references, hyp1, n=1))
hyp2_unigram_precision = float(modified_precision(references, hyp2, n=1))
# Test unigram precision with assertAlmostEqual at 4 place precision.
self.assertAlmostEqual(hyp1_unigram_precision, 0.94444444, places=4)
self.assertAlmostEqual(hyp2_unigram_precision, 0.57142857, places=4)
# Test unigram precision with rounding.
assert round(hyp1_unigram_precision, 4) == 0.9444
assert round(hyp2_unigram_precision, 4) == 0.5714
# Bigram precision
hyp1_bigram_precision = float(modified_precision(references, hyp1, n=2))
hyp2_bigram_precision = float(modified_precision(references, hyp2, n=2))
# Test bigram precision with assertAlmostEqual at 4 place precision.
self.assertAlmostEqual(hyp1_bigram_precision, 0.58823529, places=4)
self.assertAlmostEqual(hyp2_bigram_precision, 0.07692307, places=4)
# Test bigram precision with rounding.
assert round(hyp1_bigram_precision, 4) == 0.5882
assert round(hyp2_bigram_precision, 4) == 0.0769
def test_brevity_penalty(self):
# Test case from brevity_penalty_closest function in mteval-v13a.pl.
# Same test cases as in the doctest in nltk.translate.bleu_score.py
references = [["a"] * 11, ["a"] * 8]
hypothesis = ["a"] * 7
hyp_len = len(hypothesis)
closest_ref_len = closest_ref_length(references, hyp_len)
self.assertAlmostEqual(
brevity_penalty(closest_ref_len, hyp_len), 0.8669, places=4
)
references = [["a"] * 11, ["a"] * 8, ["a"] * 6, ["a"] * 7]
hypothesis = ["a"] * 7
hyp_len = len(hypothesis)
closest_ref_len = closest_ref_length(references, hyp_len)
assert brevity_penalty(closest_ref_len, hyp_len) == 1.0
def test_zero_matches(self):
# Test case where there's 0 matches
references = ["The candidate has no alignment to any of the references".split()]
hypothesis = "John loves Mary".split()
# Test BLEU to nth order of n-grams, where n is len(hypothesis).
for n in range(1, len(hypothesis)):
weights = (1.0 / n,) * n # Uniform weights.
assert sentence_bleu(references, hypothesis, weights) == 0
def test_full_matches(self):
# Test case where there's 100% matches
references = ["John loves Mary".split()]
hypothesis = "John loves Mary".split()
# Test BLEU to nth order of n-grams, where n is len(hypothesis).
for n in range(1, len(hypothesis)):
weights = (1.0 / n,) * n # Uniform weights.
assert sentence_bleu(references, hypothesis, weights) == 1.0
def test_partial_matches_hypothesis_longer_than_reference(self):
references = ["John loves Mary".split()]
hypothesis = "John loves Mary who loves Mike".split()
# Since no 4-grams matches were found the result should be zero
# exp(w_1 * 1 * w_2 * 1 * w_3 * 1 * w_4 * -inf) = 0
self.assertAlmostEqual(sentence_bleu(references, hypothesis), 0.0, places=4)
# Checks that the warning has been raised because len(reference) < 4.
try:
self.assertWarns(UserWarning, sentence_bleu, references, hypothesis)
except AttributeError:
pass # unittest.TestCase.assertWarns is only supported in Python >= 3.2.
# @unittest.skip("Skipping fringe cases for BLEU.")
class TestBLEUFringeCases(unittest.TestCase):
def test_case_where_n_is_bigger_than_hypothesis_length(self):
# Test BLEU to nth order of n-grams, where n > len(hypothesis).
references = ["John loves Mary ?".split()]
hypothesis = "John loves Mary".split()
n = len(hypothesis) + 1 #
weights = (1.0 / n,) * n # Uniform weights.
# Since no n-grams matches were found the result should be zero
# exp(w_1 * 1 * w_2 * 1 * w_3 * 1 * w_4 * -inf) = 0
self.assertAlmostEqual(
sentence_bleu(references, hypothesis, weights), 0.0, places=4
)
# Checks that the warning has been raised because len(hypothesis) < 4.
try:
self.assertWarns(UserWarning, sentence_bleu, references, hypothesis)
except AttributeError:
pass # unittest.TestCase.assertWarns is only supported in Python >= 3.2.
# Test case where n > len(hypothesis) but so is n > len(reference), and
# it's a special case where reference == hypothesis.
references = ["John loves Mary".split()]
hypothesis = "John loves Mary".split()
# Since no 4-grams matches were found the result should be zero
# exp(w_1 * 1 * w_2 * 1 * w_3 * 1 * w_4 * -inf) = 0
self.assertAlmostEqual(
sentence_bleu(references, hypothesis, weights), 0.0, places=4
)
def test_empty_hypothesis(self):
# Test case where there's hypothesis is empty.
references = ["The candidate has no alignment to any of the references".split()]
hypothesis = []
assert sentence_bleu(references, hypothesis) == 0
def test_length_one_hypothesis(self):
# Test case where there's hypothesis is of length 1 in Smoothing method 4.
references = ["The candidate has no alignment to any of the references".split()]
hypothesis = ["Foo"]
method4 = SmoothingFunction().method4
try:
sentence_bleu(references, hypothesis, smoothing_function=method4)
except ValueError:
pass # unittest.TestCase.assertWarns is only supported in Python >= 3.2.
def test_empty_references(self):
# Test case where there's reference is empty.
references = [[]]
hypothesis = "John loves Mary".split()
assert sentence_bleu(references, hypothesis) == 0
def test_empty_references_and_hypothesis(self):
# Test case where both references and hypothesis is empty.
references = [[]]
hypothesis = []
assert sentence_bleu(references, hypothesis) == 0
def test_reference_or_hypothesis_shorter_than_fourgrams(self):
# Test case where the length of reference or hypothesis
# is shorter than 4.
references = ["let it go".split()]
hypothesis = "let go it".split()
# Checks that the value the hypothesis and reference returns is 0.0
# exp(w_1 * 1 * w_2 * 1 * w_3 * 1 * w_4 * -inf) = 0
self.assertAlmostEqual(sentence_bleu(references, hypothesis), 0.0, places=4)
# Checks that the warning has been raised.
try:
self.assertWarns(UserWarning, sentence_bleu, references, hypothesis)
except AttributeError:
pass # unittest.TestCase.assertWarns is only supported in Python >= 3.2.
class TestBLEUvsMteval13a(unittest.TestCase):
def test_corpus_bleu(self):
ref_file = find("models/wmt15_eval/ref.ru")
hyp_file = find("models/wmt15_eval/google.ru")
mteval_output_file = find("models/wmt15_eval/mteval-13a.output")
# Reads the BLEU scores from the `mteval-13a.output` file.
# The order of the list corresponds to the order of the ngrams.
with open(mteval_output_file) as mteval_fin:
# The numbers are located in the last 2nd line of the file.
# The first and 2nd item in the list are the score and system names.
mteval_bleu_scores = map(float, mteval_fin.readlines()[-2].split()[1:-1])
with open(ref_file, encoding="utf8") as ref_fin:
with open(hyp_file, encoding="utf8") as hyp_fin:
# Whitespace tokenize the file.
# Note: split() automatically strip().
hypothesis = list(map(lambda x: x.split(), hyp_fin))
# Note that the corpus_bleu input is list of list of references.
references = list(map(lambda x: [x.split()], ref_fin))
# Without smoothing.
for i, mteval_bleu in zip(range(1, 10), mteval_bleu_scores):
nltk_bleu = corpus_bleu(
references, hypothesis, weights=(1.0 / i,) * i
)
# Check that the BLEU scores difference is less than 0.005 .
# Note: This is an approximate comparison; as much as
# +/- 0.01 BLEU might be "statistically significant",
# the actual translation quality might not be.
assert abs(mteval_bleu - nltk_bleu) < 0.005
# With the same smoothing method used in mteval-v13a.pl
chencherry = SmoothingFunction()
for i, mteval_bleu in zip(range(1, 10), mteval_bleu_scores):
nltk_bleu = corpus_bleu(
references,
hypothesis,
weights=(1.0 / i,) * i,
smoothing_function=chencherry.method3,
)
assert abs(mteval_bleu - nltk_bleu) < 0.005
class TestBLEUWithBadSentence(unittest.TestCase):
def test_corpus_bleu_with_bad_sentence(self):
hyp = "Teo S yb , oe uNb , R , T t , , t Tue Ar saln S , , 5istsi l , 5oe R ulO sae oR R"
ref = str(
"Their tasks include changing a pump on the faulty stokehold ."
"Likewise , two species that are very similar in morphology "
"were distinguished using genetics ."
)
references = [[ref.split()]]
hypotheses = [hyp.split()]
try: # Check that the warning is raised since no. of 2-grams < 0.
with self.assertWarns(UserWarning):
# Verify that the BLEU output is undesired since no. of 2-grams < 0.
self.assertAlmostEqual(
corpus_bleu(references, hypotheses), 0.0, places=4
)
except AttributeError: # unittest.TestCase.assertWarns is only supported in Python >= 3.2.
self.assertAlmostEqual(corpus_bleu(references, hypotheses), 0.0, places=4)
class TestBLEUWithMultipleWeights(unittest.TestCase):
def test_corpus_bleu_with_multiple_weights(self):
hyp1 = [
"It",
"is",
"a",
"guide",
"to",
"action",
"which",
"ensures",
"that",
"the",
"military",
"always",
"obeys",
"the",
"commands",
"of",
"the",
"party",
]
ref1a = [
"It",
"is",
"a",
"guide",
"to",
"action",
"that",
"ensures",
"that",
"the",
"military",
"will",
"forever",
"heed",
"Party",
"commands",
]
ref1b = [
"It",
"is",
"the",
"guiding",
"principle",
"which",
"guarantees",
"the",
"military",
"forces",
"always",
"being",
"under",
"the",
"command",
"of",
"the",
"Party",
]
ref1c = [
"It",
"is",
"the",
"practical",
"guide",
"for",
"the",
"army",
"always",
"to",
"heed",
"the",
"directions",
"of",
"the",
"party",
]
hyp2 = [
"he",
"read",
"the",
"book",
"because",
"he",
"was",
"interested",
"in",
"world",
"history",
]
ref2a = [
"he",
"was",
"interested",
"in",
"world",
"history",
"because",
"he",
"read",
"the",
"book",
]
weight_1 = (1, 0, 0, 0)
weight_2 = (0.25, 0.25, 0.25, 0.25)
weight_3 = (0, 0, 0, 0, 1)
bleu_scores = corpus_bleu(
list_of_references=[[ref1a, ref1b, ref1c], [ref2a]],
hypotheses=[hyp1, hyp2],
weights=[weight_1, weight_2, weight_3],
)
assert bleu_scores[0] == corpus_bleu(
[[ref1a, ref1b, ref1c], [ref2a]], [hyp1, hyp2], weight_1
)
assert bleu_scores[1] == corpus_bleu(
[[ref1a, ref1b, ref1c], [ref2a]], [hyp1, hyp2], weight_2
)
assert bleu_scores[2] == corpus_bleu(
[[ref1a, ref1b, ref1c], [ref2a]], [hyp1, hyp2], weight_3
)
|