File size: 11,109 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# Natural Language Toolkit: API for alignment and translation objects
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Will Zhang <[email protected]>
#         Guan Gui <[email protected]>
#         Steven Bird <[email protected]>
#         Tah Wei Hoon <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

import subprocess
from collections import namedtuple


class AlignedSent:
    """

    Return an aligned sentence object, which encapsulates two sentences

    along with an ``Alignment`` between them.



    Typically used in machine translation to represent a sentence and

    its translation.



        >>> from nltk.translate import AlignedSent, Alignment

        >>> algnsent = AlignedSent(['klein', 'ist', 'das', 'Haus'],

        ...     ['the', 'house', 'is', 'small'], Alignment.fromstring('0-3 1-2 2-0 3-1'))

        >>> algnsent.words

        ['klein', 'ist', 'das', 'Haus']

        >>> algnsent.mots

        ['the', 'house', 'is', 'small']

        >>> algnsent.alignment

        Alignment([(0, 3), (1, 2), (2, 0), (3, 1)])

        >>> from nltk.corpus import comtrans

        >>> print(comtrans.aligned_sents()[54])

        <AlignedSent: 'Weshalb also sollten...' -> 'So why should EU arm...'>

        >>> print(comtrans.aligned_sents()[54].alignment)

        0-0 0-1 1-0 2-2 3-4 3-5 4-7 5-8 6-3 7-9 8-9 9-10 9-11 10-12 11-6 12-6 13-13



    :param words: Words in the target language sentence

    :type words: list(str)

    :param mots: Words in the source language sentence

    :type mots: list(str)

    :param alignment: Word-level alignments between ``words`` and ``mots``.

        Each alignment is represented as a 2-tuple (words_index, mots_index).

    :type alignment: Alignment

    """

    def __init__(self, words, mots, alignment=None):
        self._words = words
        self._mots = mots
        if alignment is None:
            self.alignment = Alignment([])
        else:
            assert type(alignment) is Alignment
            self.alignment = alignment

    @property
    def words(self):
        return self._words

    @property
    def mots(self):
        return self._mots

    def _get_alignment(self):
        return self._alignment

    def _set_alignment(self, alignment):
        _check_alignment(len(self.words), len(self.mots), alignment)
        self._alignment = alignment

    alignment = property(_get_alignment, _set_alignment)

    def __repr__(self):
        """

        Return a string representation for this ``AlignedSent``.



        :rtype: str

        """
        words = "[%s]" % (", ".join("'%s'" % w for w in self._words))
        mots = "[%s]" % (", ".join("'%s'" % w for w in self._mots))

        return f"AlignedSent({words}, {mots}, {self._alignment!r})"

    def _to_dot(self):
        """

        Dot representation of the aligned sentence

        """
        s = "graph align {\n"
        s += "node[shape=plaintext]\n"

        # Declare node
        for w in self._words:
            s += f'"{w}_source" [label="{w}"] \n'

        for w in self._mots:
            s += f'"{w}_target" [label="{w}"] \n'

        # Alignment
        for u, v in self._alignment:
            s += f'"{self._words[u]}_source" -- "{self._mots[v]}_target" \n'

        # Connect the source words
        for i in range(len(self._words) - 1):
            s += '"{}_source" -- "{}_source" [style=invis]\n'.format(
                self._words[i],
                self._words[i + 1],
            )

        # Connect the target words
        for i in range(len(self._mots) - 1):
            s += '"{}_target" -- "{}_target" [style=invis]\n'.format(
                self._mots[i],
                self._mots[i + 1],
            )

        # Put it in the same rank
        s += "{rank = same; %s}\n" % (" ".join('"%s_source"' % w for w in self._words))
        s += "{rank = same; %s}\n" % (" ".join('"%s_target"' % w for w in self._mots))

        s += "}"

        return s

    def _repr_svg_(self):
        """

        Ipython magic : show SVG representation of this ``AlignedSent``.

        """
        dot_string = self._to_dot().encode("utf8")
        output_format = "svg"
        try:
            process = subprocess.Popen(
                ["dot", "-T%s" % output_format],
                stdin=subprocess.PIPE,
                stdout=subprocess.PIPE,
                stderr=subprocess.PIPE,
            )
        except OSError as e:
            raise Exception("Cannot find the dot binary from Graphviz package") from e
        out, err = process.communicate(dot_string)

        return out.decode("utf8")

    def __str__(self):
        """

        Return a human-readable string representation for this ``AlignedSent``.



        :rtype: str

        """
        source = " ".join(self._words)[:20] + "..."
        target = " ".join(self._mots)[:20] + "..."
        return f"<AlignedSent: '{source}' -> '{target}'>"

    def invert(self):
        """

        Return the aligned sentence pair, reversing the directionality



        :rtype: AlignedSent

        """
        return AlignedSent(self._mots, self._words, self._alignment.invert())


class Alignment(frozenset):
    """

    A storage class for representing alignment between two sequences, s1, s2.

    In general, an alignment is a set of tuples of the form (i, j, ...)

    representing an alignment between the i-th element of s1 and the

    j-th element of s2.  Tuples are extensible (they might contain

    additional data, such as a boolean to indicate sure vs possible alignments).



        >>> from nltk.translate import Alignment

        >>> a = Alignment([(0, 0), (0, 1), (1, 2), (2, 2)])

        >>> a.invert()

        Alignment([(0, 0), (1, 0), (2, 1), (2, 2)])

        >>> print(a.invert())

        0-0 1-0 2-1 2-2

        >>> a[0]

        [(0, 1), (0, 0)]

        >>> a.invert()[2]

        [(2, 1), (2, 2)]

        >>> b = Alignment([(0, 0), (0, 1)])

        >>> b.issubset(a)

        True

        >>> c = Alignment.fromstring('0-0 0-1')

        >>> b == c

        True

    """

    def __new__(cls, pairs):
        self = frozenset.__new__(cls, pairs)
        self._len = max(p[0] for p in self) if self != frozenset([]) else 0
        self._index = None
        return self

    @classmethod
    def fromstring(cls, s):
        """

        Read a giza-formatted string and return an Alignment object.



            >>> Alignment.fromstring('0-0 2-1 9-2 21-3 10-4 7-5')

            Alignment([(0, 0), (2, 1), (7, 5), (9, 2), (10, 4), (21, 3)])



        :type s: str

        :param s: the positional alignments in giza format

        :rtype: Alignment

        :return: An Alignment object corresponding to the string representation ``s``.

        """

        return Alignment([_giza2pair(a) for a in s.split()])

    def __getitem__(self, key):
        """

        Look up the alignments that map from a given index or slice.

        """
        if not self._index:
            self._build_index()
        return self._index.__getitem__(key)

    def invert(self):
        """

        Return an Alignment object, being the inverted mapping.

        """
        return Alignment(((p[1], p[0]) + p[2:]) for p in self)

    def range(self, positions=None):
        """

        Work out the range of the mapping from the given positions.

        If no positions are specified, compute the range of the entire mapping.

        """
        image = set()
        if not self._index:
            self._build_index()
        if not positions:
            positions = list(range(len(self._index)))
        for p in positions:
            image.update(f for _, f in self._index[p])
        return sorted(image)

    def __repr__(self):
        """

        Produce a Giza-formatted string representing the alignment.

        """
        return "Alignment(%r)" % sorted(self)

    def __str__(self):
        """

        Produce a Giza-formatted string representing the alignment.

        """
        return " ".join("%d-%d" % p[:2] for p in sorted(self))

    def _build_index(self):
        """

        Build a list self._index such that self._index[i] is a list

        of the alignments originating from word i.

        """
        self._index = [[] for _ in range(self._len + 1)]
        for p in self:
            self._index[p[0]].append(p)


def _giza2pair(pair_string):
    i, j = pair_string.split("-")
    return int(i), int(j)


def _naacl2pair(pair_string):
    i, j, p = pair_string.split("-")
    return int(i), int(j)


def _check_alignment(num_words, num_mots, alignment):
    """

    Check whether the alignments are legal.



    :param num_words: the number of source language words

    :type num_words: int

    :param num_mots: the number of target language words

    :type num_mots: int

    :param alignment: alignment to be checked

    :type alignment: Alignment

    :raise IndexError: if alignment falls outside the sentence

    """

    assert type(alignment) is Alignment

    if not all(0 <= pair[0] < num_words for pair in alignment):
        raise IndexError("Alignment is outside boundary of words")
    if not all(pair[1] is None or 0 <= pair[1] < num_mots for pair in alignment):
        raise IndexError("Alignment is outside boundary of mots")


PhraseTableEntry = namedtuple("PhraseTableEntry", ["trg_phrase", "log_prob"])


class PhraseTable:
    """

    In-memory store of translations for a given phrase, and the log

    probability of the those translations

    """

    def __init__(self):
        self.src_phrases = dict()

    def translations_for(self, src_phrase):
        """

        Get the translations for a source language phrase



        :param src_phrase: Source language phrase of interest

        :type src_phrase: tuple(str)



        :return: A list of target language phrases that are translations

            of ``src_phrase``, ordered in decreasing order of

            likelihood. Each list element is a tuple of the target

            phrase and its log probability.

        :rtype: list(PhraseTableEntry)

        """
        return self.src_phrases[src_phrase]

    def add(self, src_phrase, trg_phrase, log_prob):
        """

        :type src_phrase: tuple(str)

        :type trg_phrase: tuple(str)



        :param log_prob: Log probability that given ``src_phrase``,

            ``trg_phrase`` is its translation

        :type log_prob: float

        """
        entry = PhraseTableEntry(trg_phrase=trg_phrase, log_prob=log_prob)
        if src_phrase not in self.src_phrases:
            self.src_phrases[src_phrase] = []
        self.src_phrases[src_phrase].append(entry)
        self.src_phrases[src_phrase].sort(key=lambda e: e.log_prob, reverse=True)

    def __contains__(self, src_phrase):
        return src_phrase in self.src_phrases