Spaces:
Sleeping
Sleeping
File size: 8,831 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# Natural Language Toolkit: GLEU Score
#
# Copyright (C) 2001-2023 NLTK Project
# Authors:
# Contributors: Mike Schuster, Michael Wayne Goodman, Liling Tan
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
""" GLEU score implementation. """
from collections import Counter
from nltk.util import everygrams, ngrams
def sentence_gleu(references, hypothesis, min_len=1, max_len=4):
"""
Calculates the sentence level GLEU (Google-BLEU) score described in
Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser,
Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason Smith,
Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
Jeffrey Dean. (2016) Google’s Neural Machine Translation System:
Bridging the Gap between Human and Machine Translation.
eprint arXiv:1609.08144. https://arxiv.org/pdf/1609.08144v2.pdf
Retrieved on 27 Oct 2016.
From Wu et al. (2016):
"The BLEU score has some undesirable properties when used for single
sentences, as it was designed to be a corpus measure. We therefore
use a slightly different score for our RL experiments which we call
the 'GLEU score'. For the GLEU score, we record all sub-sequences of
1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then
compute a recall, which is the ratio of the number of matching n-grams
to the number of total n-grams in the target (ground truth) sequence,
and a precision, which is the ratio of the number of matching n-grams
to the number of total n-grams in the generated output sequence. Then
GLEU score is simply the minimum of recall and precision. This GLEU
score's range is always between 0 (no matches) and 1 (all match) and
it is symmetrical when switching output and target. According to
our experiments, GLEU score correlates quite well with the BLEU
metric on a corpus level but does not have its drawbacks for our per
sentence reward objective."
Note: The initial implementation only allowed a single reference, but now
a list of references is required (which is consistent with
bleu_score.sentence_bleu()).
The infamous "the the the ... " example
>>> ref = 'the cat is on the mat'.split()
>>> hyp = 'the the the the the the the'.split()
>>> sentence_gleu([ref], hyp) # doctest: +ELLIPSIS
0.0909...
An example to evaluate normal machine translation outputs
>>> ref1 = str('It is a guide to action that ensures that the military '
... 'will forever heed Party commands').split()
>>> hyp1 = str('It is a guide to action which ensures that the military '
... 'always obeys the commands of the party').split()
>>> hyp2 = str('It is to insure the troops forever hearing the activity '
... 'guidebook that party direct').split()
>>> sentence_gleu([ref1], hyp1) # doctest: +ELLIPSIS
0.4393...
>>> sentence_gleu([ref1], hyp2) # doctest: +ELLIPSIS
0.1206...
:param references: a list of reference sentences
:type references: list(list(str))
:param hypothesis: a hypothesis sentence
:type hypothesis: list(str)
:param min_len: The minimum order of n-gram this function should extract.
:type min_len: int
:param max_len: The maximum order of n-gram this function should extract.
:type max_len: int
:return: the sentence level GLEU score.
:rtype: float
"""
return corpus_gleu([references], [hypothesis], min_len=min_len, max_len=max_len)
def corpus_gleu(list_of_references, hypotheses, min_len=1, max_len=4):
"""
Calculate a single corpus-level GLEU score (aka. system-level GLEU) for all
the hypotheses and their respective references.
Instead of averaging the sentence level GLEU scores (i.e. macro-average
precision), Wu et al. (2016) sum up the matching tokens and the max of
hypothesis and reference tokens for each sentence, then compute using the
aggregate values.
From Mike Schuster (via email):
"For the corpus, we just add up the two statistics n_match and
n_all = max(n_all_output, n_all_target) for all sentences, then
calculate gleu_score = n_match / n_all, so it is not just a mean of
the sentence gleu scores (in our case, longer sentences count more,
which I think makes sense as they are more difficult to translate)."
>>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'military', 'always',
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
>>> ref1a = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'military', 'will', 'forever',
... 'heed', 'Party', 'commands']
>>> ref1b = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'military', 'forces', 'always',
... 'being', 'under', 'the', 'command', 'of', 'the', 'Party']
>>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'army', 'always', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'party']
>>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',
... 'interested', 'in', 'world', 'history']
>>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',
... 'because', 'he', 'read', 'the', 'book']
>>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]
>>> hypotheses = [hyp1, hyp2]
>>> corpus_gleu(list_of_references, hypotheses) # doctest: +ELLIPSIS
0.5673...
The example below show that corpus_gleu() is different from averaging
sentence_gleu() for hypotheses
>>> score1 = sentence_gleu([ref1a], hyp1)
>>> score2 = sentence_gleu([ref2a], hyp2)
>>> (score1 + score2) / 2 # doctest: +ELLIPSIS
0.6144...
:param list_of_references: a list of reference sentences, w.r.t. hypotheses
:type list_of_references: list(list(list(str)))
:param hypotheses: a list of hypothesis sentences
:type hypotheses: list(list(str))
:param min_len: The minimum order of n-gram this function should extract.
:type min_len: int
:param max_len: The maximum order of n-gram this function should extract.
:type max_len: int
:return: The corpus-level GLEU score.
:rtype: float
"""
# sanity check
assert len(list_of_references) == len(
hypotheses
), "The number of hypotheses and their reference(s) should be the same"
# sum matches and max-token-lengths over all sentences
corpus_n_match = 0
corpus_n_all = 0
for references, hypothesis in zip(list_of_references, hypotheses):
hyp_ngrams = Counter(everygrams(hypothesis, min_len, max_len))
tpfp = sum(hyp_ngrams.values()) # True positives + False positives.
hyp_counts = []
for reference in references:
ref_ngrams = Counter(everygrams(reference, min_len, max_len))
tpfn = sum(ref_ngrams.values()) # True positives + False negatives.
overlap_ngrams = ref_ngrams & hyp_ngrams
tp = sum(overlap_ngrams.values()) # True positives.
# While GLEU is defined as the minimum of precision and
# recall, we can reduce the number of division operations by one by
# instead finding the maximum of the denominators for the precision
# and recall formulae, since the numerators are the same:
# precision = tp / tpfp
# recall = tp / tpfn
# gleu_score = min(precision, recall) == tp / max(tpfp, tpfn)
n_all = max(tpfp, tpfn)
if n_all > 0:
hyp_counts.append((tp, n_all))
# use the reference yielding the highest score
if hyp_counts:
n_match, n_all = max(hyp_counts, key=lambda hc: hc[0] / hc[1])
corpus_n_match += n_match
corpus_n_all += n_all
# corner case: empty corpus or empty references---don't divide by zero!
if corpus_n_all == 0:
gleu_score = 0.0
else:
gleu_score = corpus_n_match / corpus_n_all
return gleu_score
|