File size: 20,504 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
# Natural Language Toolkit: IBM Model Core
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Tah Wei Hoon <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

"""

Common methods and classes for all IBM models. See ``IBMModel1``,

``IBMModel2``, ``IBMModel3``, ``IBMModel4``, and ``IBMModel5``

for specific implementations.



The IBM models are a series of generative models that learn lexical

translation probabilities, p(target language word|source language word),

given a sentence-aligned parallel corpus.



The models increase in sophistication from model 1 to 5. Typically, the

output of lower models is used to seed the higher models. All models

use the Expectation-Maximization (EM) algorithm to learn various

probability tables.



Words in a sentence are one-indexed. The first word of a sentence has

position 1, not 0. Index 0 is reserved in the source sentence for the

NULL token. The concept of position does not apply to NULL, but it is

indexed at 0 by convention.



Each target word is aligned to exactly one source word or the NULL

token.



References:

Philipp Koehn. 2010. Statistical Machine Translation.

Cambridge University Press, New York.



Peter E Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and

Robert L. Mercer. 1993. The Mathematics of Statistical Machine

Translation: Parameter Estimation. Computational Linguistics, 19 (2),

263-311.

"""

from bisect import insort_left
from collections import defaultdict
from copy import deepcopy
from math import ceil


def longest_target_sentence_length(sentence_aligned_corpus):
    """

    :param sentence_aligned_corpus: Parallel corpus under consideration

    :type sentence_aligned_corpus: list(AlignedSent)

    :return: Number of words in the longest target language sentence

        of ``sentence_aligned_corpus``

    """
    max_m = 0
    for aligned_sentence in sentence_aligned_corpus:
        m = len(aligned_sentence.words)
        max_m = max(m, max_m)
    return max_m


class IBMModel:
    """

    Abstract base class for all IBM models

    """

    # Avoid division by zero and precision errors by imposing a minimum
    # value for probabilities. Note that this approach is theoretically
    # incorrect, since it may create probabilities that sum to more
    # than 1. In practice, the contribution of probabilities with MIN_PROB
    # is tiny enough that the value of MIN_PROB can be treated as zero.
    MIN_PROB = 1.0e-12  # GIZA++ is more liberal and uses 1.0e-7

    def __init__(self, sentence_aligned_corpus):
        self.init_vocab(sentence_aligned_corpus)
        self.reset_probabilities()

    def reset_probabilities(self):
        self.translation_table = defaultdict(
            lambda: defaultdict(lambda: IBMModel.MIN_PROB)
        )
        """

        dict[str][str]: float. Probability(target word | source word).

        Values accessed as ``translation_table[target_word][source_word]``.

        """

        self.alignment_table = defaultdict(
            lambda: defaultdict(
                lambda: defaultdict(lambda: defaultdict(lambda: IBMModel.MIN_PROB))
            )
        )
        """

        dict[int][int][int][int]: float. Probability(i | j,l,m).

        Values accessed as ``alignment_table[i][j][l][m]``.

        Used in model 2 and hill climbing in models 3 and above

        """

        self.fertility_table = defaultdict(lambda: defaultdict(lambda: self.MIN_PROB))
        """

        dict[int][str]: float. Probability(fertility | source word).

        Values accessed as ``fertility_table[fertility][source_word]``.

        Used in model 3 and higher.

        """

        self.p1 = 0.5
        """

        Probability that a generated word requires another target word

        that is aligned to NULL.

        Used in model 3 and higher.

        """

    def set_uniform_probabilities(self, sentence_aligned_corpus):
        """

        Initialize probability tables to a uniform distribution



        Derived classes should implement this accordingly.

        """
        pass

    def init_vocab(self, sentence_aligned_corpus):
        src_vocab = set()
        trg_vocab = set()
        for aligned_sentence in sentence_aligned_corpus:
            trg_vocab.update(aligned_sentence.words)
            src_vocab.update(aligned_sentence.mots)
        # Add the NULL token
        src_vocab.add(None)

        self.src_vocab = src_vocab
        """

        set(str): All source language words used in training

        """

        self.trg_vocab = trg_vocab
        """

        set(str): All target language words used in training

        """

    def sample(self, sentence_pair):
        """

        Sample the most probable alignments from the entire alignment

        space



        First, determine the best alignment according to IBM Model 2.

        With this initial alignment, use hill climbing to determine the

        best alignment according to a higher IBM Model. Add this

        alignment and its neighbors to the sample set. Repeat this

        process with other initial alignments obtained by pegging an

        alignment point.



        Hill climbing may be stuck in a local maxima, hence the pegging

        and trying out of different alignments.



        :param sentence_pair: Source and target language sentence pair

            to generate a sample of alignments from

        :type sentence_pair: AlignedSent



        :return: A set of best alignments represented by their ``AlignmentInfo``

            and the best alignment of the set for convenience

        :rtype: set(AlignmentInfo), AlignmentInfo

        """
        sampled_alignments = set()
        l = len(sentence_pair.mots)
        m = len(sentence_pair.words)

        # Start from the best model 2 alignment
        initial_alignment = self.best_model2_alignment(sentence_pair)
        potential_alignment = self.hillclimb(initial_alignment)
        sampled_alignments.update(self.neighboring(potential_alignment))
        best_alignment = potential_alignment

        # Start from other model 2 alignments,
        # with the constraint that j is aligned (pegged) to i
        for j in range(1, m + 1):
            for i in range(0, l + 1):
                initial_alignment = self.best_model2_alignment(sentence_pair, j, i)
                potential_alignment = self.hillclimb(initial_alignment, j)
                neighbors = self.neighboring(potential_alignment, j)
                sampled_alignments.update(neighbors)
                if potential_alignment.score > best_alignment.score:
                    best_alignment = potential_alignment

        return sampled_alignments, best_alignment

    def best_model2_alignment(self, sentence_pair, j_pegged=None, i_pegged=0):
        """

        Finds the best alignment according to IBM Model 2



        Used as a starting point for hill climbing in Models 3 and

        above, because it is easier to compute than the best alignments

        in higher models



        :param sentence_pair: Source and target language sentence pair

            to be word-aligned

        :type sentence_pair: AlignedSent



        :param j_pegged: If specified, the alignment point of j_pegged

            will be fixed to i_pegged

        :type j_pegged: int



        :param i_pegged: Alignment point to j_pegged

        :type i_pegged: int

        """
        src_sentence = [None] + sentence_pair.mots
        trg_sentence = ["UNUSED"] + sentence_pair.words  # 1-indexed

        l = len(src_sentence) - 1  # exclude NULL
        m = len(trg_sentence) - 1

        alignment = [0] * (m + 1)  # init all alignments to NULL
        cepts = [[] for i in range(l + 1)]  # init all cepts to empty list

        for j in range(1, m + 1):
            if j == j_pegged:
                # use the pegged alignment instead of searching for best one
                best_i = i_pegged
            else:
                best_i = 0
                max_alignment_prob = IBMModel.MIN_PROB
                t = trg_sentence[j]

                for i in range(0, l + 1):
                    s = src_sentence[i]
                    alignment_prob = (
                        self.translation_table[t][s] * self.alignment_table[i][j][l][m]
                    )

                    if alignment_prob >= max_alignment_prob:
                        max_alignment_prob = alignment_prob
                        best_i = i

            alignment[j] = best_i
            cepts[best_i].append(j)

        return AlignmentInfo(
            tuple(alignment), tuple(src_sentence), tuple(trg_sentence), cepts
        )

    def hillclimb(self, alignment_info, j_pegged=None):
        """

        Starting from the alignment in ``alignment_info``, look at

        neighboring alignments iteratively for the best one



        There is no guarantee that the best alignment in the alignment

        space will be found, because the algorithm might be stuck in a

        local maximum.



        :param j_pegged: If specified, the search will be constrained to

            alignments where ``j_pegged`` remains unchanged

        :type j_pegged: int



        :return: The best alignment found from hill climbing

        :rtype: AlignmentInfo

        """
        alignment = alignment_info  # alias with shorter name
        max_probability = self.prob_t_a_given_s(alignment)

        while True:
            old_alignment = alignment
            for neighbor_alignment in self.neighboring(alignment, j_pegged):
                neighbor_probability = self.prob_t_a_given_s(neighbor_alignment)

                if neighbor_probability > max_probability:
                    alignment = neighbor_alignment
                    max_probability = neighbor_probability

            if alignment == old_alignment:
                # Until there are no better alignments
                break

        alignment.score = max_probability
        return alignment

    def neighboring(self, alignment_info, j_pegged=None):
        """

        Determine the neighbors of ``alignment_info``, obtained by

        moving or swapping one alignment point



        :param j_pegged: If specified, neighbors that have a different

            alignment point from j_pegged will not be considered

        :type j_pegged: int



        :return: A set neighboring alignments represented by their

            ``AlignmentInfo``

        :rtype: set(AlignmentInfo)

        """
        neighbors = set()

        l = len(alignment_info.src_sentence) - 1  # exclude NULL
        m = len(alignment_info.trg_sentence) - 1
        original_alignment = alignment_info.alignment
        original_cepts = alignment_info.cepts

        for j in range(1, m + 1):
            if j != j_pegged:
                # Add alignments that differ by one alignment point
                for i in range(0, l + 1):
                    new_alignment = list(original_alignment)
                    new_cepts = deepcopy(original_cepts)
                    old_i = original_alignment[j]

                    # update alignment
                    new_alignment[j] = i

                    # update cepts
                    insort_left(new_cepts[i], j)
                    new_cepts[old_i].remove(j)

                    new_alignment_info = AlignmentInfo(
                        tuple(new_alignment),
                        alignment_info.src_sentence,
                        alignment_info.trg_sentence,
                        new_cepts,
                    )
                    neighbors.add(new_alignment_info)

        for j in range(1, m + 1):
            if j != j_pegged:
                # Add alignments that have two alignment points swapped
                for other_j in range(1, m + 1):
                    if other_j != j_pegged and other_j != j:
                        new_alignment = list(original_alignment)
                        new_cepts = deepcopy(original_cepts)
                        other_i = original_alignment[other_j]
                        i = original_alignment[j]

                        # update alignments
                        new_alignment[j] = other_i
                        new_alignment[other_j] = i

                        # update cepts
                        new_cepts[other_i].remove(other_j)
                        insort_left(new_cepts[other_i], j)
                        new_cepts[i].remove(j)
                        insort_left(new_cepts[i], other_j)

                        new_alignment_info = AlignmentInfo(
                            tuple(new_alignment),
                            alignment_info.src_sentence,
                            alignment_info.trg_sentence,
                            new_cepts,
                        )
                        neighbors.add(new_alignment_info)

        return neighbors

    def maximize_lexical_translation_probabilities(self, counts):
        for t, src_words in counts.t_given_s.items():
            for s in src_words:
                estimate = counts.t_given_s[t][s] / counts.any_t_given_s[s]
                self.translation_table[t][s] = max(estimate, IBMModel.MIN_PROB)

    def maximize_fertility_probabilities(self, counts):
        for phi, src_words in counts.fertility.items():
            for s in src_words:
                estimate = counts.fertility[phi][s] / counts.fertility_for_any_phi[s]
                self.fertility_table[phi][s] = max(estimate, IBMModel.MIN_PROB)

    def maximize_null_generation_probabilities(self, counts):
        p1_estimate = counts.p1 / (counts.p1 + counts.p0)
        p1_estimate = max(p1_estimate, IBMModel.MIN_PROB)
        # Clip p1 if it is too large, because p0 = 1 - p1 should not be
        # smaller than MIN_PROB
        self.p1 = min(p1_estimate, 1 - IBMModel.MIN_PROB)

    def prob_of_alignments(self, alignments):
        probability = 0
        for alignment_info in alignments:
            probability += self.prob_t_a_given_s(alignment_info)
        return probability

    def prob_t_a_given_s(self, alignment_info):
        """

        Probability of target sentence and an alignment given the

        source sentence



        All required information is assumed to be in ``alignment_info``

        and self.



        Derived classes should override this method

        """
        return 0.0


class AlignmentInfo:
    """

    Helper data object for training IBM Models 3 and up



    Read-only. For a source sentence and its counterpart in the target

    language, this class holds information about the sentence pair's

    alignment, cepts, and fertility.



    Warning: Alignments are one-indexed here, in contrast to

    nltk.translate.Alignment and AlignedSent, which are zero-indexed

    This class is not meant to be used outside of IBM models.

    """

    def __init__(self, alignment, src_sentence, trg_sentence, cepts):
        if not isinstance(alignment, tuple):
            raise TypeError(
                "The alignment must be a tuple because it is used "
                "to uniquely identify AlignmentInfo objects."
            )

        self.alignment = alignment
        """

        tuple(int): Alignment function. ``alignment[j]`` is the position

        in the source sentence that is aligned to the position j in the

        target sentence.

        """

        self.src_sentence = src_sentence
        """

        tuple(str): Source sentence referred to by this object.

        Should include NULL token (None) in index 0.

        """

        self.trg_sentence = trg_sentence
        """

        tuple(str): Target sentence referred to by this object.

        Should have a dummy element in index 0 so that the first word

        starts from index 1.

        """

        self.cepts = cepts
        """

        list(list(int)): The positions of the target words, in

        ascending order, aligned to a source word position. For example,

        cepts[4] = (2, 3, 7) means that words in positions 2, 3 and 7

        of the target sentence are aligned to the word in position 4 of

        the source sentence

        """

        self.score = None
        """

        float: Optional. Probability of alignment, as defined by the

        IBM model that assesses this alignment

        """

    def fertility_of_i(self, i):
        """

        Fertility of word in position ``i`` of the source sentence

        """
        return len(self.cepts[i])

    def is_head_word(self, j):
        """

        :return: Whether the word in position ``j`` of the target

            sentence is a head word

        """
        i = self.alignment[j]
        return self.cepts[i][0] == j

    def center_of_cept(self, i):
        """

        :return: The ceiling of the average positions of the words in

            the tablet of cept ``i``, or 0 if ``i`` is None

        """
        if i is None:
            return 0

        average_position = sum(self.cepts[i]) / len(self.cepts[i])
        return int(ceil(average_position))

    def previous_cept(self, j):
        """

        :return: The previous cept of ``j``, or None if ``j`` belongs to

            the first cept

        """
        i = self.alignment[j]
        if i == 0:
            raise ValueError(
                "Words aligned to NULL cannot have a previous "
                "cept because NULL has no position"
            )
        previous_cept = i - 1
        while previous_cept > 0 and self.fertility_of_i(previous_cept) == 0:
            previous_cept -= 1

        if previous_cept <= 0:
            previous_cept = None
        return previous_cept

    def previous_in_tablet(self, j):
        """

        :return: The position of the previous word that is in the same

            tablet as ``j``, or None if ``j`` is the first word of the

            tablet

        """
        i = self.alignment[j]
        tablet_position = self.cepts[i].index(j)
        if tablet_position == 0:
            return None
        return self.cepts[i][tablet_position - 1]

    def zero_indexed_alignment(self):
        """

        :return: Zero-indexed alignment, suitable for use in external

            ``nltk.translate`` modules like ``nltk.translate.Alignment``

        :rtype: list(tuple)

        """
        zero_indexed_alignment = []
        for j in range(1, len(self.trg_sentence)):
            i = self.alignment[j] - 1
            if i < 0:
                i = None  # alignment to NULL token
            zero_indexed_alignment.append((j - 1, i))
        return zero_indexed_alignment

    def __eq__(self, other):
        return self.alignment == other.alignment

    def __ne__(self, other):
        return not self == other

    def __hash__(self):
        return hash(self.alignment)


class Counts:
    """

    Data object to store counts of various parameters during training

    """

    def __init__(self):
        self.t_given_s = defaultdict(lambda: defaultdict(lambda: 0.0))
        self.any_t_given_s = defaultdict(lambda: 0.0)
        self.p0 = 0.0
        self.p1 = 0.0
        self.fertility = defaultdict(lambda: defaultdict(lambda: 0.0))
        self.fertility_for_any_phi = defaultdict(lambda: 0.0)

    def update_lexical_translation(self, count, alignment_info, j):
        i = alignment_info.alignment[j]
        t = alignment_info.trg_sentence[j]
        s = alignment_info.src_sentence[i]
        self.t_given_s[t][s] += count
        self.any_t_given_s[s] += count

    def update_null_generation(self, count, alignment_info):
        m = len(alignment_info.trg_sentence) - 1
        fertility_of_null = alignment_info.fertility_of_i(0)
        self.p1 += fertility_of_null * count
        self.p0 += (m - 2 * fertility_of_null) * count

    def update_fertility(self, count, alignment_info):
        for i in range(0, len(alignment_info.src_sentence)):
            s = alignment_info.src_sentence[i]
            phi = alignment_info.fertility_of_i(i)
            self.fertility[phi][s] += count
            self.fertility_for_any_phi[s] += count