File size: 8,148 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Natural Language Toolkit: NIST Score
#
# Copyright (C) 2001-2023 NLTK Project
# Authors:
# Contributors:
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

"""NIST score implementation."""

import fractions
import math
from collections import Counter

from nltk.util import ngrams


def sentence_nist(references, hypothesis, n=5):
    """

    Calculate NIST score from

    George Doddington. 2002. "Automatic evaluation of machine translation quality

    using n-gram co-occurrence statistics." Proceedings of HLT.

    Morgan Kaufmann Publishers Inc. https://dl.acm.org/citation.cfm?id=1289189.1289273



    DARPA commissioned NIST to develop an MT evaluation facility based on the BLEU

    score. The official script used by NIST to compute BLEU and NIST score is

    mteval-14.pl. The main differences are:



     - BLEU uses geometric mean of the ngram overlaps, NIST uses arithmetic mean.

     - NIST has a different brevity penalty

     - NIST score from mteval-14.pl has a self-contained tokenizer



    Note: The mteval-14.pl includes a smoothing function for BLEU score that is NOT

          used in the NIST score computation.



    >>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',

    ...               'ensures', 'that', 'the', 'military', 'always',

    ...               'obeys', 'the', 'commands', 'of', 'the', 'party']



    >>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',

    ...               'forever', 'hearing', 'the', 'activity', 'guidebook',

    ...               'that', 'party', 'direct']



    >>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',

    ...               'ensures', 'that', 'the', 'military', 'will', 'forever',

    ...               'heed', 'Party', 'commands']



    >>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',

    ...               'guarantees', 'the', 'military', 'forces', 'always',

    ...               'being', 'under', 'the', 'command', 'of', 'the',

    ...               'Party']



    >>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',

    ...               'army', 'always', 'to', 'heed', 'the', 'directions',

    ...               'of', 'the', 'party']



    >>> sentence_nist([reference1, reference2, reference3], hypothesis1) # doctest: +ELLIPSIS

    3.3709...



    >>> sentence_nist([reference1, reference2, reference3], hypothesis2) # doctest: +ELLIPSIS

    1.4619...



    :param references: reference sentences

    :type references: list(list(str))

    :param hypothesis: a hypothesis sentence

    :type hypothesis: list(str)

    :param n: highest n-gram order

    :type n: int

    """
    return corpus_nist([references], [hypothesis], n)


def corpus_nist(list_of_references, hypotheses, n=5):
    """

    Calculate a single corpus-level NIST score (aka. system-level BLEU) for all

    the hypotheses and their respective references.



    :param references: a corpus of lists of reference sentences, w.r.t. hypotheses

    :type references: list(list(list(str)))

    :param hypotheses: a list of hypothesis sentences

    :type hypotheses: list(list(str))

    :param n: highest n-gram order

    :type n: int

    """
    # Before proceeding to compute NIST, perform sanity checks.
    assert len(list_of_references) == len(
        hypotheses
    ), "The number of hypotheses and their reference(s) should be the same"

    # Collect the ngram coounts from the reference sentences.
    ngram_freq = Counter()
    total_reference_words = 0
    for (
        references
    ) in list_of_references:  # For each source sent, there's a list of reference sents.
        for reference in references:
            # For each order of ngram, count the ngram occurrences.
            for i in range(1, n + 1):
                ngram_freq.update(ngrams(reference, i))
            total_reference_words += len(reference)

    # Compute the information weights based on the reference sentences.
    # Eqn 2 in Doddington (2002):
    # Info(w_1 ... w_n) = log_2 [ (# of occurrences of w_1 ... w_n-1) / (# of occurrences of w_1 ... w_n) ]
    information_weights = {}
    for _ngram in ngram_freq:  # w_1 ... w_n
        _mgram = _ngram[:-1]  #  w_1 ... w_n-1
        # From https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/mteval-v13a.pl#L546
        # it's computed as such:
        #     denominator = ngram_freq[_mgram] if _mgram and _mgram in ngram_freq else denominator = total_reference_words
        #     information_weights[_ngram] = -1 * math.log(ngram_freq[_ngram]/denominator) / math.log(2)
        #
        # Mathematically, it's equivalent to the our implementation:
        if _mgram and _mgram in ngram_freq:
            numerator = ngram_freq[_mgram]
        else:
            numerator = total_reference_words
        information_weights[_ngram] = math.log(numerator / ngram_freq[_ngram], 2)

    # Micro-average.
    nist_precision_numerator_per_ngram = Counter()
    nist_precision_denominator_per_ngram = Counter()
    l_ref, l_sys = 0, 0
    # For each order of ngram.
    for i in range(1, n + 1):
        # Iterate through each hypothesis and their corresponding references.
        for references, hypothesis in zip(list_of_references, hypotheses):
            hyp_len = len(hypothesis)

            # Find reference with the best NIST score.
            nist_score_per_ref = []
            for reference in references:
                _ref_len = len(reference)
                # Counter of ngrams in hypothesis.
                hyp_ngrams = (
                    Counter(ngrams(hypothesis, i))
                    if len(hypothesis) >= i
                    else Counter()
                )
                ref_ngrams = (
                    Counter(ngrams(reference, i)) if len(reference) >= i else Counter()
                )
                ngram_overlaps = hyp_ngrams & ref_ngrams
                # Precision part of the score in Eqn 3
                _numerator = sum(
                    information_weights[_ngram] * count
                    for _ngram, count in ngram_overlaps.items()
                )
                _denominator = sum(hyp_ngrams.values())
                _precision = 0 if _denominator == 0 else _numerator / _denominator
                nist_score_per_ref.append(
                    (_precision, _numerator, _denominator, _ref_len)
                )
            # Best reference.
            precision, numerator, denominator, ref_len = max(nist_score_per_ref)
            nist_precision_numerator_per_ngram[i] += numerator
            nist_precision_denominator_per_ngram[i] += denominator
            l_ref += ref_len
            l_sys += hyp_len

    # Final NIST micro-average mean aggregation.
    nist_precision = 0
    for i in nist_precision_numerator_per_ngram:
        precision = (
            nist_precision_numerator_per_ngram[i]
            / nist_precision_denominator_per_ngram[i]
        )
        nist_precision += precision
    # Eqn 3 in Doddington(2002)
    return nist_precision * nist_length_penalty(l_ref, l_sys)


def nist_length_penalty(ref_len, hyp_len):
    """

    Calculates the NIST length penalty, from Eq. 3 in Doddington (2002)



        penalty = exp( beta * log( min( len(hyp)/len(ref) , 1.0 )))



    where,



        `beta` is chosen to make the brevity penalty factor = 0.5 when the

        no. of words in the system output (hyp) is 2/3 of the average

        no. of words in the reference translation (ref)



    The NIST penalty is different from BLEU's such that it minimize the impact

    of the score of small variations in the length of a translation.

    See Fig. 4 in  Doddington (2002)

    """
    ratio = hyp_len / ref_len
    if 0 < ratio < 1:
        ratio_x, score_x = 1.5, 0.5
        beta = math.log(score_x) / math.log(ratio_x) ** 2
        return math.exp(beta * math.log(ratio) ** 2)
    else:  # ratio <= 0 or ratio >= 1
        return max(min(ratio, 1.0), 0.0)