Spaces:
Sleeping
Sleeping
File size: 9,538 Bytes
14c9181 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from mmocr.registry import MODELS
from mmocr.utils import ConfigType, MultiConfig, OptConfigType
@MODELS.register_module()
class BiFPN(BaseModule):
"""illustration of a minimal bifpn unit P7_0 ------------------------->
P7_2 -------->
|-------------| β β |
P6_0 ---------> P6_1 ---------> P6_2 -------->
|-------------|--------------β β β | P5_0
---------> P5_1 ---------> P5_2 --------> |-------------|--------------β
β β | P4_0 ---------> P4_1 ---------> P4_2
--------> |-------------|--------------β β
|--------------β | P3_0 -------------------------> P3_2 -------->
"""
def __init__(self,
in_channels: List[int],
out_channels: int,
num_outs: int,
repeat_times: int = 2,
start_level: int = 0,
end_level: int = -1,
add_extra_convs: bool = False,
relu_before_extra_convs: bool = False,
no_norm_on_lateral: bool = False,
conv_cfg: OptConfigType = None,
norm_cfg: OptConfigType = None,
act_cfg: OptConfigType = None,
laterial_conv1x1: bool = False,
upsample_cfg: ConfigType = dict(mode='nearest'),
pool_cfg: ConfigType = dict(),
init_cfg: MultiConfig = dict(
type='Xavier', layer='Conv2d', distribution='uniform')):
super().__init__(init_cfg=init_cfg)
assert isinstance(in_channels, list)
self.in_channels = in_channels
self.out_channels = out_channels
self.num_ins = len(in_channels)
self.num_outs = num_outs
self.relu_before_extra_convs = relu_before_extra_convs
self.no_norm_on_lateral = no_norm_on_lateral
self.upsample_cfg = upsample_cfg.copy()
self.repeat_times = repeat_times
if end_level == -1 or end_level == self.num_ins - 1:
self.backbone_end_level = self.num_ins
assert num_outs >= self.num_ins - start_level
else:
# if end_level is not the last level, no extra level is allowed
self.backbone_end_level = end_level + 1
assert end_level < self.num_ins
assert num_outs == end_level - start_level + 1
self.start_level = start_level
self.end_level = end_level
self.add_extra_convs = add_extra_convs
self.lateral_convs = nn.ModuleList()
self.extra_convs = nn.ModuleList()
self.bifpn_convs = nn.ModuleList()
for i in range(self.start_level, self.backbone_end_level):
if in_channels[i] == out_channels:
l_conv = nn.Identity()
else:
l_conv = ConvModule(
in_channels[i],
out_channels,
1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
bias=True,
act_cfg=act_cfg,
inplace=False)
self.lateral_convs.append(l_conv)
for _ in range(repeat_times):
self.bifpn_convs.append(
BiFPNLayer(
channels=out_channels,
levels=num_outs,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
pool_cfg=pool_cfg))
# add extra conv layers (e.g., RetinaNet)
extra_levels = num_outs - self.backbone_end_level + self.start_level
if add_extra_convs and extra_levels >= 1:
for i in range(extra_levels):
if i == 0:
in_channels = self.in_channels[self.backbone_end_level - 1]
else:
in_channels = out_channels
if in_channels == out_channels:
extra_fpn_conv = nn.MaxPool2d(
kernel_size=3, stride=2, padding=1)
else:
extra_fpn_conv = nn.Sequential(
ConvModule(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
self.extra_convs.append(extra_fpn_conv)
def forward(self, inputs):
def extra_convs(inputs, extra_convs):
outputs = list()
for extra_conv in extra_convs:
inputs = extra_conv(inputs)
outputs.append(inputs)
return outputs
assert len(inputs) == len(self.in_channels)
# build laterals
laterals = [
lateral_conv(inputs[i + self.start_level])
for i, lateral_conv in enumerate(self.lateral_convs)
]
if self.num_outs > len(laterals) and self.add_extra_convs:
extra_source = inputs[self.backbone_end_level - 1]
for extra_conv in self.extra_convs:
extra_source = extra_conv(extra_source)
laterals.append(extra_source)
for bifpn_module in self.bifpn_convs:
laterals = bifpn_module(laterals)
outs = laterals
return tuple(outs)
def swish(x):
return x * x.sigmoid()
class BiFPNLayer(BaseModule):
def __init__(self,
channels,
levels,
init=0.5,
conv_cfg=None,
norm_cfg=None,
act_cfg=None,
upsample_cfg=None,
pool_cfg=None,
eps=0.0001,
init_cfg=None):
super().__init__(init_cfg=init_cfg)
self.act_cfg = act_cfg
self.upsample_cfg = upsample_cfg
self.pool_cfg = pool_cfg
self.eps = eps
self.levels = levels
self.bifpn_convs = nn.ModuleList()
# weighted
self.weight_two_nodes = nn.Parameter(
torch.Tensor(2, levels).fill_(init))
self.weight_three_nodes = nn.Parameter(
torch.Tensor(3, levels - 2).fill_(init))
self.relu = nn.ReLU()
for _ in range(2):
for _ in range(self.levels - 1): # 1,2,3
fpn_conv = nn.Sequential(
ConvModule(
channels,
channels,
3,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
inplace=False))
self.bifpn_convs.append(fpn_conv)
def forward(self, inputs):
assert len(inputs) == self.levels
# build top-down and down-top path with stack
levels = self.levels
# w relu
w1 = self.relu(self.weight_two_nodes)
w1 /= torch.sum(w1, dim=0) + self.eps # normalize
w2 = self.relu(self.weight_three_nodes)
# w2 /= torch.sum(w2, dim=0) + self.eps # normalize
# build top-down
idx_bifpn = 0
pathtd = inputs
inputs_clone = []
for in_tensor in inputs:
inputs_clone.append(in_tensor.clone())
for i in range(levels - 1, 0, -1):
_, _, h, w = pathtd[i - 1].shape
# pathtd[i - 1] = (
# w1[0, i - 1] * pathtd[i - 1] + w1[1, i - 1] *
# F.interpolate(pathtd[i], size=(h, w), mode='nearest')) / (
# w1[0, i - 1] + w1[1, i - 1] + self.eps)
pathtd[i -
1] = w1[0, i -
1] * pathtd[i - 1] + w1[1, i - 1] * F.interpolate(
pathtd[i], size=(h, w), mode='nearest')
pathtd[i - 1] = swish(pathtd[i - 1])
pathtd[i - 1] = self.bifpn_convs[idx_bifpn](pathtd[i - 1])
idx_bifpn = idx_bifpn + 1
# build down-top
for i in range(0, levels - 2, 1):
tmp_path = torch.stack([
inputs_clone[i + 1], pathtd[i + 1],
F.max_pool2d(pathtd[i], kernel_size=3, stride=2, padding=1)
],
dim=-1)
norm_weight = w2[:, i] / (w2[:, i].sum() + self.eps)
pathtd[i + 1] = (norm_weight * tmp_path).sum(dim=-1)
# pathtd[i + 1] = w2[0, i] * inputs_clone[i + 1]
# + w2[1, i] * pathtd[
# i + 1] + w2[2, i] * F.max_pool2d(
# pathtd[i], kernel_size=3, stride=2, padding=1)
pathtd[i + 1] = swish(pathtd[i + 1])
pathtd[i + 1] = self.bifpn_convs[idx_bifpn](pathtd[i + 1])
idx_bifpn = idx_bifpn + 1
pathtd[levels - 1] = w1[0, levels - 1] * pathtd[levels - 1] + w1[
1, levels - 1] * F.max_pool2d(
pathtd[levels - 2], kernel_size=3, stride=2, padding=1)
pathtd[levels - 1] = swish(pathtd[levels - 1])
pathtd[levels - 1] = self.bifpn_convs[idx_bifpn](pathtd[levels - 1])
return pathtd
|