File size: 20,864 Bytes
14c9181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
import copy
from typing import Dict, List, Optional, Sequence, Union

import torch
import torch.nn.functional as F
from torch import Tensor, nn

from mmocr.models.common import Dictionary
from mmocr.models.textrecog.decoders import BaseDecoder
from mmocr.registry import MODELS
from mmocr.utils.typing_utils import TextSpottingDataSample
from .position_embedding import PositionEmbeddingSine


@MODELS.register_module()
class SPTSDecoder(BaseDecoder):
    """SPTS Decoder.

    Args:
        dictionary (dict or :obj:`Dictionary`): The config for `Dictionary` or
            the instance of `Dictionary`.
        num_bins (int): Number of bins dividing the image. Defaults to 1000.
        n_head (int): Number of parallel attention heads. Defaults to 8.
        d_model (int): Dimension :math:`D_m` of the input from previous model.
            Defaults to 256.
        d_feedforward (int): Dimension of the feedforward layer.
            Defaults to 1024.
        normalize_before (bool): Whether to normalize the input before
            encoding/decoding. Defaults to True.
        max_num_text (int): Maximum number of text instances in a sample.
            Defaults to 60.
        module_loss (dict, optional): Config to build loss. Defaults to None.
        postprocessor (dict, optional): Config to build postprocessor.
            Defaults to None.
        init_cfg (dict or list[dict], optional): Initialization configs.
            Defaults to None.
    """

    def __init__(self,
                 dictionary: Union[Dict, Dictionary],
                 num_bins: int = 1000,
                 n_head: int = 8,
                 d_model: int = 256,
                 d_feedforward: int = 1024,
                 normalize_before: bool = True,
                 dropout: float = 0.1,
                 max_num_text: int = 60,
                 module_loss: Optional[Dict] = None,
                 postprocessor: Optional[Dict] = None,
                 init_cfg: Optional[Union[Dict, List[Dict]]] = None) -> None:

        # TODO: fix hardcode
        self.max_seq_len = (2 + 25) * max_num_text + 1
        super().__init__(
            dictionary=dictionary,
            module_loss=module_loss,
            postprocessor=postprocessor,
            max_seq_len=self.max_seq_len,
            init_cfg=init_cfg)
        self.num_bins = num_bins

        self.embedding = DecoderEmbeddings(self.dictionary.num_classes,
                                           self.dictionary.padding_idx,
                                           d_model, self.max_seq_len, dropout)
        self.pos_embedding = PositionEmbeddingSine(d_model // 2)

        self.vocab_embed = self._gen_vocab_embed(d_model, d_model,
                                                 self.dictionary.num_classes,
                                                 3)
        encoder_layer = TransformerEncoderLayer(d_model, n_head, d_feedforward,
                                                dropout, 'relu',
                                                normalize_before)
        encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
        num_encoder_layers = 6
        self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers,
                                          encoder_norm)

        decoder_layer = TransformerDecoderLayer(d_model, n_head, d_feedforward,
                                                dropout, 'relu',
                                                normalize_before)
        decoder_norm = nn.LayerNorm(d_model)
        num_decoder_layers = 6
        self.decoder = TransformerDecoder(
            decoder_layer,
            num_decoder_layers,
            decoder_norm,
            return_intermediate=False)
        self._reset_parameters()

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def _gen_vocab_embed(self, input_dim: int, hidden_dim: int,
                         output_dim: int, num_layers: int) -> nn.Module:
        """Generate vocab embedding layer."""
        net = nn.Sequential()
        h = [hidden_dim] * (num_layers - 1)
        for i, (n, k) in enumerate(zip([input_dim] + h, h + [output_dim])):
            net.add_module(f'layer-{i}', nn.Linear(n, k))
            if i < num_layers - 1:
                net.add_module(f'relu-{i}', nn.ReLU())
        return net

    def forward_train(
        self,
        feat: Optional[torch.Tensor] = None,
        out_enc: Optional[torch.Tensor] = None,
        data_samples: Optional[Sequence[TextSpottingDataSample]] = None
    ) -> torch.Tensor:
        """Forward for training.

        Args:
            feat (torch.Tensor, optional): The feature map from backbone of
                shape :math:`(N, E, H, W)`. Defaults to None.
            out_enc (torch.Tensor, optional): Encoder output. Defaults to None.
            data_samples (Sequence[TextRecogDataSample]): Batch of
                TextRecogDataSample, containing gt_text information. Defaults
                to None.
        """
        mask, pos_embed, memory, query_embed = self._embed(
            out_enc, data_samples)

        padded_targets = [
            data_sample.gt_instances.padded_indexes
            for data_sample in data_samples
        ]
        padded_targets = torch.stack(padded_targets, dim=0).to(out_enc.device)
        # we don't need eos here
        tgt = self.embedding(padded_targets[:, :-1]).permute(1, 0, 2)
        hs = self.decoder(
            tgt,
            memory,
            memory_key_padding_mask=mask,
            pos=pos_embed,
            query_pos=query_embed[:len(tgt)],
            tgt_mask=self._generate_square_subsequent_mask(len(tgt)).to(
                tgt.device))
        return self.vocab_embed(hs[-1].transpose(0, 1))

    def forward_test(
        self,
        feat: Optional[torch.Tensor] = None,
        out_enc: Optional[torch.Tensor] = None,
        data_samples: Optional[Sequence[TextSpottingDataSample]] = None
    ) -> torch.Tensor:
        """Forward for testing.

        Args:
            feat (torch.Tensor, optional): The feature map from backbone of
                shape :math:`(N, E, H, W)`. Defaults to None.
            out_enc (torch.Tensor, optional): Encoder output. Defaults to None.
            data_samples (Sequence[TextRecogDataSample]): Batch of
                TextRecogDataSample, containing gt_text information. Defaults
                to None.
        """

        batch_size = out_enc.shape[0]
        mask, pos_embed, memory, query_embed = self._embed(
            out_enc, data_samples)

        max_probs = []
        seq = torch.zeros(
            batch_size, 1, dtype=torch.long).to(
                out_enc.device) + self.dictionary.start_idx
        for i in range(self.max_seq_len):
            tgt = self.embedding(seq).permute(1, 0, 2)
            hs = self.decoder(
                tgt,
                memory,
                memory_key_padding_mask=mask,
                pos=pos_embed,
                query_pos=query_embed[:len(tgt)],
                tgt_mask=self._generate_square_subsequent_mask(len(tgt)).to(
                    tgt.device))  # bs, 1, E ?
            out = self.vocab_embed(hs.transpose(1, 2)[-1, :, -1, :])
            out = out.softmax(-1)

            # bins chars unk eos seq_eos sos padding
            if i % 27 == 0:  # coordinate or eos
                out[:, self.num_bins:self.dictionary.seq_end_idx] = 0
                out[:, self.dictionary.seq_end_idx + 1:] = 0
            elif i % 27 == 1:  # coordinate
                out[:, self.num_bins:] = 0
            else:  # chars
                out[:, :self.num_bins] = 0
                out[:, self.dictionary.seq_end_idx:] = 0

            max_prob, extra_seq = torch.max(out, dim=-1, keepdim=True)
            # prob, extra_seq = out.topk(dim=-1, k=1)
            # work for single batch only (original implementation)
            # TODO: optimize for multi-batch
            seq = torch.cat([seq, extra_seq], dim=-1)
            max_probs.append(max_prob)
            if extra_seq[0] == self.dictionary.seq_end_idx:
                break

        max_probs = torch.cat(max_probs, dim=-1)
        max_probs = max_probs[:, :-1]  # remove seq_eos
        seq = seq[:, 1:-1]  # remove start index and seq_eos
        return max_probs, seq

    def _embed(self, out_enc, data_samples):
        bs, c, h, w = out_enc.shape
        mask, pos_embed = self._gen_mask(out_enc, data_samples)
        out_enc = out_enc.flatten(2).permute(2, 0, 1)
        pos_embed = pos_embed.flatten(2).permute(2, 0, 1)
        mask = mask.flatten(1)
        # TODO move encoder to mmcv
        memory = self.encoder(
            out_enc, src_key_padding_mask=mask, pos=pos_embed.half())

        query_embed = self.embedding.position_embeddings.weight.unsqueeze(1)
        query_embed = query_embed.repeat(1, bs, 1)
        return mask, pos_embed, memory, query_embed

    def _generate_square_subsequent_mask(self, size):
        r"""Generate a square mask for the sequence. The masked positions are
            filled with float('-inf'). Unmasked positions are filled with
            float(0.0).
        """
        mask = (torch.triu(torch.ones(size, size)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(
            mask == 1, float(0.0))
        return mask

    def _gen_mask(self, out_enc, data_samples):
        bs, _, h, w = out_enc.shape
        masks = torch.ones((bs, h, w), dtype=bool, device=out_enc.device)
        for i, data_sample in enumerate(data_samples):
            img_h, img_w = data_sample.img_shape
            masks[i, :img_h, :img_w] = False
        masks = F.interpolate(
            masks[None].float(), size=(h, w)).to(torch.bool)[0]
        return masks, self.pos_embedding(masks)


class DecoderEmbeddings(nn.Module):

    def __init__(self, num_classes: int, padding_idx: int, hidden_dim,
                 max_position_embeddings, dropout):
        super(DecoderEmbeddings, self).__init__()
        self.word_embeddings = nn.Embedding(
            num_classes, hidden_dim, padding_idx=padding_idx)
        self.position_embeddings = nn.Embedding(max_position_embeddings,
                                                hidden_dim)

        self.LayerNorm = torch.nn.LayerNorm(hidden_dim)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        input_shape = x.size()
        seq_length = input_shape[1]
        device = x.device

        position_ids = torch.arange(
            seq_length, dtype=torch.long, device=device)
        position_ids = position_ids.unsqueeze(0).expand(input_shape)

        input_embeds = self.word_embeddings(x)
        position_embeds = self.position_embeddings(position_ids)

        embeddings = input_embeds + position_embeds
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)

        return embeddings


class TransformerEncoder(nn.Module):

    def __init__(self, encoder_layer, num_layers, norm=None):
        super(TransformerEncoder, self).__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm

    def forward(self,
                src,
                mask: Optional[Tensor] = None,
                src_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None):
        output = src

        for layer in self.layers:
            output = layer(
                output,
                src_mask=mask,
                src_key_padding_mask=src_key_padding_mask,
                pos=pos)

        if self.norm is not None:
            output = self.norm(output)

        return output


class TransformerDecoder(nn.Module):

    def __init__(self,
                 decoder_layer,
                 num_layers,
                 norm=None,
                 return_intermediate=False):
        super(TransformerDecoder, self).__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm
        self.return_intermediate = return_intermediate

    def forward(self,
                tgt,
                memory,
                tgt_mask: Optional[Tensor] = None,
                memory_mask: Optional[Tensor] = None,
                tgt_key_padding_mask: Optional[Tensor] = None,
                memory_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None,
                query_pos: Optional[Tensor] = None):
        output = tgt

        for layer in self.layers:
            output = layer(
                output,
                memory,
                tgt_mask=tgt_mask,
                memory_mask=memory_mask,
                tgt_key_padding_mask=tgt_key_padding_mask,
                memory_key_padding_mask=memory_key_padding_mask,
                pos=pos,
                query_pos=query_pos)

        if self.norm is not None:
            # nn.LayerNorm(d_model)
            output = self.norm(output)

        return output.unsqueeze(0)


class TransformerEncoderLayer(nn.Module):

    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward=2048,
                 dropout=0.1,
                 activation='relu',
                 normalize_before=False):
        super(TransformerEncoderLayer, self).__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self,
                     src,
                     src_mask: Optional[Tensor] = None,
                     src_key_padding_mask: Optional[Tensor] = None,
                     pos: Optional[Tensor] = None):
        q = k = self.with_pos_embed(src, pos)
        src2 = self.self_attn(
            q,
            k,
            value=src,
            attn_mask=src_mask,
            key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src

    def forward_pre(self,
                    src,
                    src_mask: Optional[Tensor] = None,
                    src_key_padding_mask: Optional[Tensor] = None,
                    pos: Optional[Tensor] = None):
        src2 = self.norm1(src)
        q = k = self.with_pos_embed(src2, pos)
        src2 = self.self_attn(
            q,
            k,
            value=src2,
            attn_mask=src_mask,
            key_padding_mask=src_key_padding_mask)[0]
        src = src + self.dropout1(src2)
        src2 = self.norm2(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src2))))
        src = src + self.dropout2(src2)
        return src

    def forward(self,
                src,
                src_mask: Optional[Tensor] = None,
                src_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None):
        if self.normalize_before:
            return self.forward_pre(src, src_mask, src_key_padding_mask, pos)
        return self.forward_post(src, src_mask, src_key_padding_mask, pos)


class TransformerDecoderLayer(nn.Module):

    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward=2048,
                 dropout=0.1,
                 activation='relu',
                 normalize_before=False):
        super(TransformerDecoderLayer, self).__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.multihead_attn = nn.MultiheadAttention(
            d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self,
                     tgt,
                     memory,
                     tgt_mask: Optional[Tensor] = None,
                     memory_mask: Optional[Tensor] = None,
                     tgt_key_padding_mask: Optional[Tensor] = None,
                     memory_key_padding_mask: Optional[Tensor] = None,
                     pos: Optional[Tensor] = None,
                     query_pos: Optional[Tensor] = None):
        q = k = self.with_pos_embed(tgt, query_pos)
        tgt2 = self.self_attn(
            q,
            k,
            value=tgt,
            attn_mask=tgt_mask,
            key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)
        tgt2 = self.multihead_attn(
            query=self.with_pos_embed(tgt, query_pos),
            key=self.with_pos_embed(memory, pos),
            value=memory,
            attn_mask=memory_mask,
            key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout3(tgt2)
        tgt = self.norm3(tgt)
        return tgt

    def forward_pre(self,
                    tgt,
                    memory,
                    tgt_mask: Optional[Tensor] = None,
                    memory_mask: Optional[Tensor] = None,
                    tgt_key_padding_mask: Optional[Tensor] = None,
                    memory_key_padding_mask: Optional[Tensor] = None,
                    pos: Optional[Tensor] = None,
                    query_pos: Optional[Tensor] = None):
        tgt2 = self.norm1(tgt)
        q = k = self.with_pos_embed(tgt2, query_pos)
        tgt2 = self.self_attn(
            q,
            k,
            value=tgt2,
            attn_mask=tgt_mask,
            key_padding_mask=tgt_key_padding_mask)[0]
        tgt = tgt + self.dropout1(tgt2)
        tgt2 = self.norm2(tgt)
        tgt2 = self.multihead_attn(
            query=self.with_pos_embed(tgt2, query_pos),
            key=self.with_pos_embed(memory, pos),
            value=memory,
            attn_mask=memory_mask,
            key_padding_mask=memory_key_padding_mask)[0]
        tgt = tgt + self.dropout2(tgt2)
        tgt2 = self.norm3(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2))))
        tgt = tgt + self.dropout3(tgt2)
        return tgt

    def forward(self,
                tgt,
                memory,
                tgt_mask: Optional[Tensor] = None,
                memory_mask: Optional[Tensor] = None,
                tgt_key_padding_mask: Optional[Tensor] = None,
                memory_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None,
                query_pos: Optional[Tensor] = None):
        if self.normalize_before:
            return self.forward_pre(tgt, memory, tgt_mask, memory_mask,
                                    tgt_key_padding_mask,
                                    memory_key_padding_mask, pos, query_pos)
        return self.forward_post(tgt, memory, tgt_mask, memory_mask,
                                 tgt_key_padding_mask, memory_key_padding_mask,
                                 pos, query_pos)


def _get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])


def _get_activation_fn(activation):
    """Return an activation function given a string."""
    if activation == 'relu':
        return F.relu
    if activation == 'gelu':
        return F.gelu
    if activation == 'glu':
        return F.glu
    raise RuntimeError(F'activation should be relu/gelu, not {activation}.')