Spaces:
Sleeping
Sleeping
""" | |
Tests for IBM Model 2 training methods | |
""" | |
import unittest | |
from collections import defaultdict | |
from nltk.translate import AlignedSent, IBMModel, IBMModel2 | |
from nltk.translate.ibm_model import AlignmentInfo | |
class TestIBMModel2(unittest.TestCase): | |
def test_set_uniform_alignment_probabilities(self): | |
# arrange | |
corpus = [ | |
AlignedSent(["ham", "eggs"], ["schinken", "schinken", "eier"]), | |
AlignedSent(["spam", "spam", "spam", "spam"], ["spam", "spam"]), | |
] | |
model2 = IBMModel2(corpus, 0) | |
# act | |
model2.set_uniform_probabilities(corpus) | |
# assert | |
# expected_prob = 1.0 / (length of source sentence + 1) | |
self.assertEqual(model2.alignment_table[0][1][3][2], 1.0 / 4) | |
self.assertEqual(model2.alignment_table[2][4][2][4], 1.0 / 3) | |
def test_set_uniform_alignment_probabilities_of_non_domain_values(self): | |
# arrange | |
corpus = [ | |
AlignedSent(["ham", "eggs"], ["schinken", "schinken", "eier"]), | |
AlignedSent(["spam", "spam", "spam", "spam"], ["spam", "spam"]), | |
] | |
model2 = IBMModel2(corpus, 0) | |
# act | |
model2.set_uniform_probabilities(corpus) | |
# assert | |
# examine i and j values that are not in the training data domain | |
self.assertEqual(model2.alignment_table[99][1][3][2], IBMModel.MIN_PROB) | |
self.assertEqual(model2.alignment_table[2][99][2][4], IBMModel.MIN_PROB) | |
def test_prob_t_a_given_s(self): | |
# arrange | |
src_sentence = ["ich", "esse", "ja", "gern", "räucherschinken"] | |
trg_sentence = ["i", "love", "to", "eat", "smoked", "ham"] | |
corpus = [AlignedSent(trg_sentence, src_sentence)] | |
alignment_info = AlignmentInfo( | |
(0, 1, 4, 0, 2, 5, 5), | |
[None] + src_sentence, | |
["UNUSED"] + trg_sentence, | |
None, | |
) | |
translation_table = defaultdict(lambda: defaultdict(float)) | |
translation_table["i"]["ich"] = 0.98 | |
translation_table["love"]["gern"] = 0.98 | |
translation_table["to"][None] = 0.98 | |
translation_table["eat"]["esse"] = 0.98 | |
translation_table["smoked"]["räucherschinken"] = 0.98 | |
translation_table["ham"]["räucherschinken"] = 0.98 | |
alignment_table = defaultdict( | |
lambda: defaultdict(lambda: defaultdict(lambda: defaultdict(float))) | |
) | |
alignment_table[0][3][5][6] = 0.97 # None -> to | |
alignment_table[1][1][5][6] = 0.97 # ich -> i | |
alignment_table[2][4][5][6] = 0.97 # esse -> eat | |
alignment_table[4][2][5][6] = 0.97 # gern -> love | |
alignment_table[5][5][5][6] = 0.96 # räucherschinken -> smoked | |
alignment_table[5][6][5][6] = 0.96 # räucherschinken -> ham | |
model2 = IBMModel2(corpus, 0) | |
model2.translation_table = translation_table | |
model2.alignment_table = alignment_table | |
# act | |
probability = model2.prob_t_a_given_s(alignment_info) | |
# assert | |
lexical_translation = 0.98 * 0.98 * 0.98 * 0.98 * 0.98 * 0.98 | |
alignment = 0.97 * 0.97 * 0.97 * 0.97 * 0.96 * 0.96 | |
expected_probability = lexical_translation * alignment | |
self.assertEqual(round(probability, 4), round(expected_probability, 4)) | |