sunnychenxiwang's picture
Upload 1600 files
14c9181 verified
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import mmcv
import mmengine
from mmocr.utils import dump_ocr_data
def collect_files(img_dir, gt_dir):
"""Collect all images and their corresponding groundtruth files.
Args:
img_dir (str): The image directory
gt_dir (str): The groundtruth directory
Returns:
files (list): The list of tuples (img_file, groundtruth_file)
"""
assert isinstance(img_dir, str)
assert img_dir
assert isinstance(gt_dir, str)
assert gt_dir
ann_list, imgs_list = [], []
for img_file in os.listdir(img_dir):
ann_file = img_file.split('_')[0] + '_gt_ocr.txt'
ann_list.append(osp.join(gt_dir, ann_file))
imgs_list.append(osp.join(img_dir, img_file))
files = list(zip(imgs_list, ann_list))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
return files
def collect_annotations(files, nproc=1):
"""Collect the annotation information.
Args:
files (list): The list of tuples (image_file, groundtruth_file)
nproc (int): The number of process to collect annotations
Returns:
images (list): The list of image information dicts
"""
assert isinstance(files, list)
assert isinstance(nproc, int)
if nproc > 1:
images = mmengine.track_parallel_progress(
load_img_info, files, nproc=nproc)
else:
images = mmengine.track_progress(load_img_info, files)
return images
def load_img_info(files):
"""Load the information of one image.
Args:
files (tuple): The tuple of (img_file, groundtruth_file)
Returns:
img_info (dict): The dict of the img and annotation information
"""
assert isinstance(files, tuple)
img_file, gt_file = files
assert osp.basename(gt_file).split('_')[0] == osp.basename(gt_file).split(
'_')[0]
# read imgs while ignoring orientations
img = mmcv.imread(img_file, 'unchanged')
img_info = dict(
file_name=osp.basename(img_file),
height=img.shape[0],
width=img.shape[1],
segm_file=osp.basename(gt_file))
if osp.splitext(gt_file)[1] == '.txt':
img_info = load_txt_info(gt_file, img_info)
else:
raise NotImplementedError
return img_info
def load_txt_info(gt_file, img_info):
"""Collect the annotation information.
The annotation format is as the following:
x, y, w, h, text
977, 152, 16, 49, NOME
962, 143, 12, 323, APPINHANESI BLAZEK PASSOTTO
906, 446, 12, 94, 206940361
905, 641, 12, 44, SPTC
Args:
gt_file (str): The path to ground-truth
img_info (dict): The dict of the img and annotation information
Returns:
img_info (dict): The dict of the img and annotation information
"""
with open(gt_file, encoding='latin1') as f:
anno_info = []
for line in f:
line = line.strip('\n')
if line[0] == '[' or line[0] == 'x':
continue
ann = line.split(',')
bbox = ann[0:4]
bbox = [int(coord) for coord in bbox]
x, y, w, h = bbox
segmentation = [x, y, x + w, y, x + w, y + h, x, y + h]
anno = dict(
iscrowd=0,
category_id=1,
bbox=bbox,
area=w * h,
segmentation=[segmentation])
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def split_train_val_list(full_list, val_ratio):
"""Split list by val_ratio.
Args:
full_list (list): list to be split
val_ratio (float): split ratio for val set
return:
list(list, list): train_list and val_list
"""
n_total = len(full_list)
offset = int(n_total * val_ratio)
if n_total == 0 or offset < 1:
return [], full_list
val_list = full_list[:offset]
train_list = full_list[offset:]
return [train_list, val_list]
def parse_args():
parser = argparse.ArgumentParser(
description='Generate training and val set of BID ')
parser.add_argument('root_path', help='Root dir path of BID')
parser.add_argument(
'--nproc', default=1, type=int, help='Number of processes')
parser.add_argument(
'--val-ratio', help='Split ratio for val set', default=0., type=float)
args = parser.parse_args()
return args
def main():
args = parse_args()
root_path = args.root_path
with mmengine.Timer(print_tmpl='It takes {}s to convert BID annotation'):
files = collect_files(
osp.join(root_path, 'imgs'), osp.join(root_path, 'annotations'))
image_infos = collect_annotations(files, nproc=args.nproc)
if args.val_ratio:
image_infos = split_train_val_list(image_infos, args.val_ratio)
splits = ['training', 'val']
else:
image_infos = [image_infos]
splits = ['training']
for i, split in enumerate(splits):
dump_ocr_data(image_infos[i],
osp.join(root_path, 'instances_' + split + '.json'),
'textdet')
if __name__ == '__main__':
main()