Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import json | |
import os.path as osp | |
import numpy as np | |
from shapely.geometry import Polygon | |
from mmocr.utils import dump_ocr_data | |
def collect_level_info(annotation): | |
"""Collect information from any level in HierText. | |
Args: | |
annotation (dict): dict at each level | |
Return: | |
anno (dict): dict containing annotations | |
""" | |
iscrowd = 0 if annotation['legible'] else 1 | |
vertices = np.array(annotation['vertices']) | |
polygon = Polygon(vertices) | |
area = polygon.area | |
min_x, min_y, max_x, max_y = polygon.bounds | |
bbox = [min_x, min_y, max_x - min_x, max_y - min_y] | |
segmentation = [i for j in vertices for i in j] | |
anno = dict( | |
iscrowd=iscrowd, | |
category_id=1, | |
bbox=bbox, | |
area=area, | |
segmentation=[segmentation]) | |
return anno | |
def collect_hiertext_info(root_path, level, split, print_every=1000): | |
"""Collect the annotation information. | |
The annotation format is as the following: | |
{ | |
"info": { | |
"date": "release date", | |
"version": "current version" | |
}, | |
"annotations": [ // List of dictionaries, one for each image. | |
{ | |
"image_id": "the filename of corresponding image.", | |
"image_width": image_width, // (int) The image width. | |
"image_height": image_height, // (int) The image height. | |
"paragraphs": [ // List of paragraphs. | |
{ | |
"vertices": [[x1, y1], [x2, y2],...,[xn, yn]] | |
"legible": true | |
"lines": [ | |
{ | |
"vertices": [[x1, y1], [x2, y2],...,[x4, y4]] | |
"text": L | |
"legible": true, | |
"handwritten": false | |
"vertical": false, | |
"words": [ | |
{ | |
"vertices": [[x1, y1], [x2, y2],...,[xm, ym]] | |
"text": "the text content of this word", | |
"legible": true | |
"handwritten": false, | |
"vertical": false, | |
}, ... | |
] | |
}, ... | |
] | |
}, ... | |
] | |
}, ... | |
] | |
} | |
Args: | |
root_path (str): Root path to the dataset | |
level (str): Level of annotations, which should be 'word', 'line', | |
or 'paragraphs' | |
split (str): Dataset split, which should be 'train' or 'validation' | |
print_every (int): Print log information per iter | |
Returns: | |
img_info (dict): The dict of the img and annotation information | |
""" | |
annotation_path = osp.join(root_path, 'annotations/' + split + '.jsonl') | |
if not osp.exists(annotation_path): | |
raise Exception( | |
f'{annotation_path} not exists, please check and try again.') | |
annotation = json.load(open(annotation_path))['annotations'] | |
img_infos = [] | |
for i, img_annos in enumerate(annotation): | |
if i > 0 and i % print_every == 0: | |
print(f'{i}/{len(annotation)}') | |
img_info = {} | |
img_info['file_name'] = img_annos['image_id'] + '.jpg' | |
img_info['height'] = img_annos['image_height'] | |
img_info['width'] = img_annos['image_width'] | |
img_info['segm_file'] = annotation_path | |
anno_info = [] | |
for paragraph in img_annos['paragraphs']: | |
if level == 'paragraph': | |
anno = collect_level_info(paragraph) | |
anno_info.append(anno) | |
elif level == 'line': | |
for line in paragraph['lines']: | |
anno = collect_level_info(line) | |
anno_info.append(anno) | |
elif level == 'word': | |
for line in paragraph['lines']: | |
for word in line['words']: | |
anno = collect_level_info(line) | |
anno_info.append(anno) | |
img_info.update(anno_info=anno_info) | |
img_infos.append(img_info) | |
return img_infos | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Generate training and validation set of HierText ') | |
parser.add_argument('root_path', help='Root dir path of HierText') | |
parser.add_argument( | |
'--level', | |
default='word', | |
help='HierText provides three levels of annotation', | |
choices=['word', 'line', 'paragraph']) | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
root_path = args.root_path | |
print('Processing training set...') | |
training_infos = collect_hiertext_info(root_path, args.level, 'train') | |
dump_ocr_data(training_infos, | |
osp.join(root_path, 'instances_training.json'), 'textdet') | |
print('Processing validation set...') | |
val_infos = collect_hiertext_info(root_path, args.level, 'val') | |
dump_ocr_data(val_infos, osp.join(root_path, 'instances_val.json'), | |
'textdet') | |
print('Finish') | |
if __name__ == '__main__': | |
main() | |