# 数据变换迁移 ## 简介 MMOCR 0.x 版本中,我们在 `mmocr/datasets/pipelines/xxx_transforms.py` 中实现了一系列的数据变换(Data Transforms)方法。然而,这些模块分散在各处,且缺乏规范统一的设计。因此,我们在 MMOCR 1.x 版本中对所有的数据增强模块进行了重构,并依照任务类型分别存放在 `mmocr/datasets/transforms` 目录下的 `ocr_transforms.py`,`textdet_transforms.py` 及 `textrecog_transforms.py` 中。其中,`ocr_transforms.py` 中实现了 OCR 相关任务通用的数据增强模块,而 `textdet_transforms.py` 和 `textrecog_transforms.py` 则分别实现了文本检测任务与文本识别任务相关的数据增强模组。 由于在重构过程中我们对部分模块进行了重命名、合并或拆分,使得新的调用接口与默认参数可能与旧版本存在不一致。因此,本文档将详细介绍如何对数据增强模块进行迁移,即,如何配置现有的数据变换来达到与旧版一致的行为。 ## 配置迁移指南 ### 数据格式化相关数据变换 1. `Collect` + `CustomFormatBundle` -> [`PackTextDetInputs`](mmocr.datasets.transforms.PackTextDetInputs)/[`PackTextRecogInputs`](mmocr.datasets.transforms.PackTextRecogInputs) `PackxxxInputs` 同时囊括了 `Collect` 和 `CustomFormatBundle` 两个功能,且不再有 `key` 参数,而训练目标 target 的生成现在被转移至在 `loss` 中完成。
MMOCR 0.x 配置 MMOCR 1.x 配置
```python dict( type='CustomFormatBundle', keys=['gt_shrink', 'gt_shrink_mask', 'gt_thr', 'gt_thr_mask'], meta_keys=['img_path', 'ori_shape', 'img_shape'], visualize=dict(flag=False, boundary_key='gt_shrink')), dict( type='Collect', keys=['img', 'gt_shrink', 'gt_shrink_mask', 'gt_thr', 'gt_thr_mask']) ``` ```python dict( type='PackTextDetInputs', meta_keys=('img_path', 'ori_shape', 'img_shape')) ```
### 数据增强相关数据变换 1. `ResizeOCR` -> [`Resize`](mmocr.datasets.transforms.Resize), [`RescaleToHeight`](mmocr.datasets.transforms.RescaleToHeight), [`PadToWidth`](mmocr.datasets.transforms.PadToWidth) 原有的 `ResizeOCR` 现在被拆分为三个独立的数据增强模块。 `keep_aspect_ratio=False` 时,等价为 1.x 版本中的 `Resize`,其配置可按如下方式修改。
MMOCR 0.x 配置 MMOCR 1.x 配置
```python dict( type='ResizeOCR', height=32, min_width=100, max_width=100, keep_aspect_ratio=False) ``` ```python dict( type='Resize', scale=(100, 32), keep_ratio=False) ```
`keep_aspect_ratio=True`,且 `max_width=None` 时。将图片的高缩放至固定值,并等比例缩放图像的宽。
MMOCR 0.x 配置 MMOCR 1.x 配置
```python dict( type='ResizeOCR', height=32, min_width=32, max_width=None, width_downsample_ratio = 1.0 / 16 keep_aspect_ratio=True) ``` ```python dict( type='RescaleToHeight', height=32, min_width=32, max_width=None, width_divisor=16), ```
`keep_aspect_ratio=True`,且 `max_width` 为固定值时。将图片的高缩放至固定值,并等比例缩放图像的宽。若缩放后的图像宽小于 `max_width`, 则将其填充至 `max_width`, 反之则将其裁剪至 `max_width`。即,输出图像的尺寸固定为 `(height, max_width)`。
MMOCR 0.x 配置 MMOCR 1.x 配置
```python dict( type='ResizeOCR', height=32, min_width=32, max_width=100, width_downsample_ratio = 1.0 / 16, keep_aspect_ratio=True) ``` ```python dict( type='RescaleToHeight', height=32, min_width=32, max_width=100, width_divisor=16), dict( type='PadToWidth', width=100) ```
2. `RandomRotateTextDet` & `RandomRotatePolyInstances` -> [`RandomRotate`](mmocr.datasets.transforms.RandomRotate) 随机旋转数据增强策略已被整合至 `RanomRotate`。该方法的默认行为与 0.x 版本中的 `RandomRotateTextDet` 保持一致。此时仅需指定最大旋转角度 `max_angle` 即可。 ```{note} 新旧版本 "max_angle" 的默认值不同,因此需要重新进行指定。 ```
MMOCR 0.x 配置 MMOCR 1.x 配置
```python dict(type='RandomRotateTextDet') ``` ```python dict(type='RandomRotate', max_angle=10) ```
对于 `RandomRotatePolyInstances`,则需要指定参数 `use_canvas=True`。
MMOCR 0.x 配置 MMOCR 1.x 配置
```python dict( type='RandomRotatePolyInstances', rotate_ratio=0.5, # 指定概率为0.5 max_angle=60, pad_with_fixed_color=False) ``` ```python # 用 RandomApply 对数据变换进行包装,并指定执行概率 dict( type='RandomApply', transforms=[ dict(type='RandomRotate', max_angle=60, pad_with_fixed_color=False, use_canvas=True)], prob=0.5) # 设置执行概率为 0.5 ```
```{note} 在 0.x 版本中,部分数据增强方法通过定义一个内部变量 "xxx_ratio" 来指定执行概率,如 "rotate_ratio", "crop_ratio" 等。在 1.x 版本中,这些参数已被统一删除。现在,我们可以通过 "RandomApply" 来对不同的数据变换方法进行包装,并指定其执行概率。 ``` 3. `RandomCropFlip` -> [`TextDetRandomCropFlip`](mmocr.datasets.transforms.TextDetRandomCropFlip) 目前仅对方法名进行了更改,其他参数保持一致。 4. `RandomCropPolyInstances` -> [`RandomCrop`](mmocr.datasets.transforms.RandomCrop) 新版本移除了 `crop_ratio` 以及 `instance_key`,并统一使用 `gt_polygons` 为目标进行裁剪。
MMOCR 0.x 配置 MMOCR 1.x 配置
```python dict( type='RandomCropPolyInstances', instance_key='gt_masks', crop_ratio=0.8, # 指定概率为 0.8 min_side_ratio=0.3) ``` ```python # 用 RandomApply 对数据变换进行包装,并指定执行概率 dict( type='RandomApply', transforms=[dict(type='RandomCrop', min_side_ratio=0.3)], prob=0.8) # 设置执行概率为 0.8 ```
5. `RandomCropInstances` -> [`TextDetRandomCrop`](mmocr.datasets.transforms.TextDetRandomCrop) 新版本移除了 `instance_key` 和 `mask_type`,并统一使用 `gt_polygons` 为目标进行裁剪。
MMOCR 0.x 配置 MMOCR 1.x 配置
```python dict( type='RandomCropInstances', target_size=(800,800), instance_key='gt_kernels') ``` ```python dict( type='TextDetRandomCrop', target_size=(800,800)) ```
6. `EastRandomCrop` -> [`RandomCrop`](mmocr.datasets.transforms.RandomCrop) + [`Resize`](mmocr.datasets.transforms.Resize) + [`mmengine.Pad`](mmcv.transforms.Pad) 原有的 `EastRandomCrop` 内同时对图像进行了剪裁、缩放以及填充。在新版本中,我们可以通过组合三种数据增强策略来达到相同的效果。
MMOCR 0.x 配置 MMOCR 1.x 配置
```python dict( type='EastRandomCrop', max_tries=10, min_crop_side_ratio=0.1, target_size=(640, 640)) ``` ```python dict(type='RandomCrop', min_side_ratio=0.1), dict(type='Resize', scale=(640,640), keep_ratio=True), dict(type='Pad', size=(640,640)) ```
7. `RandomScaling` -> [`mmengine.RandomResize`](mmcv.transforms.RandomResize) 在新版本中,我们直接使用 MMEngine 中实现的 `RandomResize` 来代替原有的实现。
MMOCR 0.x 配置 MMOCR 1.x 配置
```python dict( type='RandomScaling', size=800, scale=(0.75, 2.5)) ``` ```python dict( type='RandomResize', scale=(800, 800), ratio_range=(0.75, 2.5), keep_ratio=True) ```
```{note} 默认地,数据流水线会从当前 *scope* 的注册器中搜索对应的数据变换,如果不存在该数据变换,则将继续在上游库,如 MMCV 及 MMEngine 中进行搜索。例如,MMOCR 中并未实现 `RandomResize` 方法,但我们仍然可以在配置中直接引用该数据增强方法,因为程序将自动从上游的 MMCV 中搜索该方法。此外,用户也可以通过添加前缀的形式来指定 *scope*。例如,`mmengine.RandomResize` 将强制指定使用 MMCV 库中实现的 `RandomResize`,当上下游库中存在同名方法时,则可以通过这种形式强制使用特定的版本。另外需要注意的是,MMCV 中所有的数据变换方法都被注册至 MMEngine 中,因此我们使用 `mmengine.RandomResize` 而不是 `mmcv.RandomResize`。 ``` 8. `SquareResizePad` -> [`Resize`](mmocr.datasets.transforms.Resize) + [`SourceImagePad`](mmocr.datasets.transforms.SourceImagePad) 原有的 `SquareResizePad` 内部实现了两个分支,并依据概率 `pad_ratio` 随机使用其中的一个分支进行数据增强。具体而言,一个分支先对图像缩放再填充;另一个分支则直接对图像进行缩放。为增强不同模块的复用性,我们在 1.x 版本中将该方法拆分成了 `Resize` + `SourceImagePad` 的组合形式,并通过 MMCV 中的 `RandomChoice` 来控制分支。
MMOCR 0.x 配置 MMOCR 1.x 配置
```python dict( type='SquareResizePad', target_size=800, pad_ratio=0.6) ``` ```python dict( type='RandomChoice', transforms=[ [ dict( type='Resize', scale=800, keep_ratio=True), dict( type='SourceImagePad', target_scale=800) ], [ dict( type='Resize', scale=800, keep_ratio=False) ] ], prob=[0.4, 0.6]), # 两种组合的选用概率 ```
```{note} 在 1.x 版本中,随机选择包装器 "RandomChoice" 代替了 "OneOfWrapper",可以从一系列数据变换组合中随机抽取一组并应用。 ``` 9. `RandomWrapper` -> [`mmegnine.RandomApply`](mmcv.transforms.RandomApply) 在 1.x 版本中,`RandomWrapper` 包装器被替换为由 MMCV 实现的 `RandomApply`,用以指定数据变换的执行概率。其中概率 `p` 现在被命名为 `prob`。
MMOCR 0.x 配置 MMOCR 1.x 配置
```python dict( type='RandomWrapper', p=0.25, transforms=[ dict(type='PyramidRescale'), ]) ``` ```python dict( type='RandomApply', prob=0.25, transforms=[ dict(type='PyramidRescale'), ]) ```
10. `OneOfWrapper` -> [`mmegnine.RandomChoice`](mmcv.transforms.RandomChoice) 随机选择包装器现在被重命名为 `RandomChoice`,并且使用方法和原来完全一致。 11. `ScaleAspectJitter` -> [`ShortScaleAspectJitter`](mmocr.datasets.transforms.ShortScaleAspectJitter), [`BoundedScaleAspectJitter`](mmocr.datasets.transforms.BoundedScaleAspectJitter) 原有的 `ScaleAspectJitter` 实现了多种不同的图像尺寸抖动数据增强策略,在新版本中,我们将其拆分为数个逻辑更加清晰的独立数据变化方法。 `resize_type='indep_sample_in_range'` 时,其等价于图像在指定范围内的随机缩放。
MMOCR 0.x 配置 MMOCR 1.x 配置
```python dict( type='ScaleAspectJitter', img_scale=None, keep_ratio=False, resize_type='indep_sample_in_range', scale_range=(640, 2560)) ``` ```python dict( type='RandomResize', scale=(640, 640), ratio_range=(1.0, 4.125), resize_type='Resize', keep_ratio=True)) ```
`resize_type='long_short_bound'` 时,将图像缩放至指定大小,再对其长宽比进行抖动。这一逻辑现在由新的数据变换类 `BoundedScaleAspectJitter` 实现。
MMOCR 0.x 配置 MMOCR 1.x 配置
```python dict( type='ScaleAspectJitter', img_scale=[(3000, 736)], # Unused ratio_range=(0.7, 1.3), aspect_ratio_range=(0.9, 1.1), multiscale_mode='value', long_size_bound=800, short_size_bound=480, resize_type='long_short_bound', keep_ratio=False) ``` ```python dict( type='BoundedScaleAspectJitter', long_size_bound=800, short_size_bound=480, ratio_range=(0.7, 1.3), aspect_ratio_range=(0.9, 1.1)) ```
`resize_type='around_min_img_scale'` (默认参数)时,将图像的短边缩放至指定大小,再在指定范围内对长宽比进行抖动。最后,确保其边长能被 `scale_divisor` 整除。这一逻辑由新的数据变换类 `ShortScaleAspectJitter` 实现。
MMOCR 0.x 配置 MMOCR 1.x 配置
```python dict( type='ScaleAspectJitter', img_scale=[(3000, 640)], ratio_range=(0.7, 1.3), aspect_ratio_range=(0.9, 1.1), multiscale_mode='value', keep_ratio=False) ``` ```python dict( type='ShortScaleAspectJitter', short_size=640, ratio_range=(0.7, 1.3), aspect_ratio_range=(0.9, 1.1), scale_divisor=32), ```