Spaces:
Runtime error
Runtime error
File size: 3,679 Bytes
f518bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
# general settings
name: Allweather_Histotormer
model_type: ImageCleanModel
scale: 1
num_gpu: 4 # set num_gpu: 0 for cpu mode
manual_seed: 100
# dataset and data loader settings
datasets:
train:
name: TrainSet
type: Dataset_PairedImage
dataroot_gt: /home1/ssq/data/allweather/gt/
dataroot_lq: /home1/ssq/data/allweather/input/
geometric_augs: true
filename_tmpl: '{}'
io_backend:
type: disk
# data loader
use_shuffle: true
num_worker_per_gpu: 8
batch_size_per_gpu: 8
### -------------Progressive training--------------------------
mini_batch_sizes: [8,5,2,1,1] # Batch size per gpu
iters: [92000,84000,56000,36000,32000]
gt_size: 362 # Max patch size for progressive training
gt_sizes: [128,160,256,320,362] # Patch sizes for progressive training.
### ------------------------------------------------------------
### ------- Training on single fixed-patch size 128x128---------
# mini_batch_sizes: [8]
# iters: [300000]
# gt_size: 128
# gt_sizes: [128]
### ------------------------------------------------------------
dataset_enlarge_ratio: 1
prefetch_mode: ~
val_snow_s:
name: ValSet_Snow100K-S
type: Dataset_PairedImage
dataroot_gt: /home1/ssq/data/allweather/test/Snow100K-S/gt/
dataroot_lq: /home1/ssq/data/allweather/test/Snow100K-S/synthetic/
io_backend:
type: disk
val_snow_l:
name: ValSet_Snow100K-L
type: Dataset_PairedImage
dataroot_gt: /home1/ssq/data/allweather/test/Snow100K-L/gt/
dataroot_lq: /home1/ssq/data/allweather/test/Snow100K-L/synthetic/
io_backend:
type: disk
val_test1:
name: ValSet_Test1
type: Dataset_PairedImage
dataroot_gt: /home1/ssq/data/allweather/test/Test1/gt/
dataroot_lq: /home1/ssq/data/allweather/test/Test1/input/
io_backend:
type: disk
val_raindrop:
name: ValSet_RainDrop
type: Dataset_PairedImage
dataroot_gt: /home1/ssq/data/allweather/test/RainDrop/gt/
dataroot_lq: /home1/ssq/data/allweather/test/RainDrop/input/
io_backend:
type: disk
# network structures
network_g:
type: Histoformer
inp_channels: 3
out_channels: 3
dim: 36
num_blocks: [4,4,6,8]
num_refinement_blocks: 4
heads: [1,2,4,8]
ffn_expansion_factor: 2.667
bias: False
LayerNorm_type: WithBias
dual_pixel_task: False
# path
path:
pretrain_network_g: ~
strict_load_g: true
resume_state: ~
# training settings
train:
total_iter: 300000
warmup_iter: -1 # no warm up
use_grad_clip: true
# Split 300k iterations into two cycles.
# 1st cycle: fixed 3e-4 LR for 92k iters.
# 2nd cycle: cosine annealing (3e-4 to 1e-6) for 208k iters.
scheduler:
type: CosineAnnealingRestartCyclicLR # ReduceLROnPlateau
periods: [92000, 208000]
restart_weights: [1,1]
eta_mins: [0.0003,0.000001]
mixing_augs:
mixup: false
mixup_beta: 1.2
use_identity: true
optim_g:
type: AdamW
lr: !!float 3e-4
weight_decay: !!float 1e-4
betas: [0.9, 0.999]
# losses
pixel_opt:
type: L1Loss
loss_weight: 1
reduction: mean
seq_opt:
type: Pearson
# validation settings
val:
window_size: 8
val_freq: !!float 1e3
save_img: true
rgb2bgr: true
use_image: true
max_minibatch: 8
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 0
test_y_channel: true
# logging settings
logger:
print_freq: 10
save_checkpoint_freq: !!float 1e3
use_tb_logger: true
wandb:
project: ~
resume_id: ~
# dist training settings
dist_params:
backend: nccl
port: 29500
|