File size: 14,535 Bytes
f518bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import importlib
import torch
from collections import OrderedDict
from copy import deepcopy
from os import path as osp
from tqdm import tqdm

from basicsr.models.archs import define_network
from basicsr.models.base_model import BaseModel
from basicsr.utils import get_root_logger, imwrite, tensor2img
from huggingface_hub import PyTorchModelHubMixin
loss_module = importlib.import_module('basicsr.models.losses')
metric_module = importlib.import_module('basicsr.metrics')

import os
import random
import numpy as np
import cv2
import torch.nn.functional as F
from functools import partial
#from audtorch.metrics.functional import pearsonr
import torch.autograd as autograd

class Mixing_Augment:
    def __init__(self, mixup_beta, use_identity, device):
        self.dist = torch.distributions.beta.Beta(torch.tensor([mixup_beta]), torch.tensor([mixup_beta]))
        self.device = device

        self.use_identity = use_identity

        self.augments = [self.mixup]

    def mixup(self, target, input_):
        lam = self.dist.rsample((1,1)).item()
    
        r_index = torch.randperm(target.size(0)).to(self.device)
    
        target = lam * target + (1-lam) * target[r_index, :]
        input_ = lam * input_ + (1-lam) * input_[r_index, :]
    
        return target, input_

    def __call__(self, target, input_):
        if self.use_identity:
            augment = random.randint(0, len(self.augments))
            if augment < len(self.augments):
                target, input_ = self.augments[augment](target, input_)
        else:
            augment = random.randint(0, len(self.augments)-1)
            target, input_ = self.augments[augment](target, input_)
        return target, input_

class ImageCleanModel(BaseModel):
    """Base Deblur model for single image deblur."""

    def __init__(self, opt):
        super(ImageCleanModel, self).__init__(opt)

        # define network

        self.mixing_flag = self.opt['train']['mixing_augs'].get('mixup', False)
        if self.mixing_flag:
            mixup_beta       = self.opt['train']['mixing_augs'].get('mixup_beta', 1.2)
            use_identity     = self.opt['train']['mixing_augs'].get('use_identity', False)
            self.mixing_augmentation = Mixing_Augment(mixup_beta, use_identity, self.device)

        self.net_g = define_network(deepcopy(opt['network_g']))
        self.net_g = self.model_to_device(self.net_g)
        self.print_network(self.net_g)

        # load pretrained models
        load_path = self.opt['path'].get('pretrain_network_g', None)
        if load_path is not None:
            self.load_network(self.net_g, load_path,
                              self.opt['path'].get('strict_load_g', True), param_key=self.opt['path'].get('param_key', 'params'))

        if self.is_train:
            self.init_training_settings()
        self.psnr_best = -1
    def init_training_settings(self):
        self.net_g.train()
        train_opt = self.opt['train']

        self.ema_decay = train_opt.get('ema_decay', 0)
        if self.ema_decay > 0:
            logger = get_root_logger()
            logger.info(
                f'Use Exponential Moving Average with decay: {self.ema_decay}')
            # define network net_g with Exponential Moving Average (EMA)
            # net_g_ema is used only for testing on one GPU and saving
            # There is no need to wrap with DistributedDataParallel
            self.net_g_ema = define_network(self.opt['network_g']).to(
                self.device)
            # load pretrained model
            load_path = self.opt['path'].get('pretrain_network_g', None)
            if load_path is not None:
                self.load_network(self.net_g_ema, load_path,
                                  self.opt['path'].get('strict_load_g',
                                                       True), 'params_ema')
            else:
                self.model_ema(0)  # copy net_g weight
            self.net_g_ema.eval()

        # define losses
        if train_opt.get('pixel_opt'):
            pixel_type = train_opt['pixel_opt'].pop('type')
            cri_pix_cls = getattr(loss_module, pixel_type)
            self.cri_pix = cri_pix_cls(**train_opt['pixel_opt']).to(
                self.device)
        else:
            raise ValueError('pixel loss are None.')
        if train_opt.get('seq_opt'):
#            from audtorch.metrics.functional import pearsonr
#            self.cri_seq = pearsonr
            self.cri_seq = self.pearson_correlation_loss #
        self.cri_celoss = torch.nn.CrossEntropyLoss()
        # set up optimizers and schedulers
        self.setup_optimizers()
        self.setup_schedulers()

    def pearson_correlation_loss(self, x1, x2):
        assert x1.shape == x2.shape
        b, c = x1.shape[:2]
        dim = -1
        x1, x2 = x1.reshape(b, -1), x2.reshape(b, -1)
        x1_mean, x2_mean = x1.mean(dim=dim, keepdims=True), x2.mean(dim=dim, keepdims=True)
        numerator = ((x1 - x1_mean) * (x2 - x2_mean)).sum( dim=dim, keepdims=True )
        
        std1 = (x1 - x1_mean).pow(2).sum(dim=dim, keepdims=True).sqrt() 
        std2 = (x2 - x2_mean).pow(2).sum(dim=dim, keepdims=True).sqrt()
        denominator = std1 * std2
        corr = numerator.div(denominator + 1e-6)
        return corr

    def setup_optimizers(self):
        train_opt = self.opt['train']
        optim_params = []

        for k, v in self.net_g.named_parameters():
            if v.requires_grad:
                optim_params.append(v)
            else:
                logger = get_root_logger()
                logger.warning(f'Params {k} will not be optimized.')

        optim_type = train_opt['optim_g'].pop('type')
        if optim_type == 'Adam':
            self.optimizer_g = torch.optim.Adam(optim_params, **train_opt['optim_g'])
        elif optim_type == 'AdamW':
            self.optimizer_g = torch.optim.AdamW(optim_params, **train_opt['optim_g'])
        else:
            raise NotImplementedError(
                f'optimizer {optim_type} is not supperted yet.')
        self.optimizers.append(self.optimizer_g)

    def feed_train_data(self, data):
        self.lq = data['lq'].to(self.device)
        if 'gt' in data:
            self.gt = data['gt'].to(self.device)
        if 'label' in data:
            self.label = data['label']
#            self.label = torch.nn.functional.one_hot(data['label'], num_classes=3)
        if self.mixing_flag:
            self.gt, self.lq = self.mixing_augmentation(self.gt, self.lq)

    def feed_data(self, data):
        self.lq = data['lq'].to(self.device)
        if 'gt' in data:
            self.gt = data['gt'].to(self.device)

    def check_inf_nan(self, x):
        x[x.isnan()] = 0
        x[x.isinf()] = 1e7
        return x
    def compute_correlation_loss(self, x1, x2):
        b, c = x1.shape[0:2]
        x1 = x1.view(b, -1)
        x2 = x2.view(b, -1)
#        print(x1, x2)
        pearson = (1. - self.cri_seq(x1, x2)) / 2.
        return pearson[~pearson.isnan()*~pearson.isinf()].mean()

    def optimize_parameters(self, current_iter):
        self.optimizer_g.zero_grad()
        self.output = self.net_g(self.lq, )

        loss_dict = OrderedDict()
        # pixel loss
        l_pix = self.cri_pix(self.output, self.gt)
        loss_dict['l_pix'] = l_pix
        '''
        l_mask = self.cri_pix(self.pred_mask, self.gt - self.output.detach())
        loss_dict['l_mask'] = l_mask
        '''
        l_pear = self.compute_correlation_loss(self.output, self.gt)
        loss_dict['l_pear'] = l_pear

#        l_pred = self.cri_celoss(self.pred, self.label.to(self.pred.device))
#        loss_dict['l_pred'] = l_pred
#        print("pear:", l_pear, "pix:", l_pix)
        loss_total = l_pix + l_pear #+ 0.01*l_pred#+ l_mask
        loss_total.backward()
        
        if self.opt['train']['use_grad_clip']:
            torch.nn.utils.clip_grad_norm_(self.net_g.parameters(), 0.01, error_if_nonfinite=False)
        self.optimizer_g.step()

        self.log_dict, self.loss_total = self.reduce_loss_dict(loss_dict)
        self.loss_dict = loss_dict
        if self.ema_decay > 0:
            self.model_ema(decay=self.ema_decay)

    def pad_test(self, window_size):        
        scale = self.opt.get('scale', 1)
        mod_pad_h, mod_pad_w = 0, 0
        _, _, h, w = self.lq.size()
        if h % window_size != 0:
            mod_pad_h = window_size - h % window_size
        if w % window_size != 0:
            mod_pad_w = window_size - w % window_size
        img = F.pad(self.lq, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
        self.nonpad_test(img)
        _, _, h, w = self.output.size()
        self.output = self.output[:, :, 0:h - mod_pad_h * scale, 0:w - mod_pad_w * scale]

    def nonpad_test(self, img=None):
        if img is None:
            img = self.lq      
        if hasattr(self, 'net_g_ema'):
            self.net_g_ema.eval()
            with torch.no_grad():
                pred = self.net_g_ema(img)
            if isinstance(pred, list):
                pred = pred[-1]
            self.output = pred
        else:
            self.net_g.eval()
            with torch.no_grad():
                pred = self.net_g(img)
            if isinstance(pred, list):
                pred = pred[-1]
            self.output = pred
            self.net_g.train()

    def dist_validation(self, dataloader, current_iter, tb_logger, save_img, rgb2bgr, use_image):
        if os.environ['LOCAL_RANK'] == '0':
            return self.nondist_validation(dataloader, current_iter, tb_logger, save_img, rgb2bgr, use_image)
        else:
            return 0.

    def nondist_validation(self, dataloader, current_iter, tb_logger,
                           save_img, rgb2bgr, use_image):
        dataset_name = dataloader.dataset.opt['name']
        with_metrics = self.opt['val'].get('metrics') is not None
        if with_metrics:
            self.metric_results = {
                metric: 0
                for metric in self.opt['val']['metrics'].keys()
            }
        # pbar = tqdm(total=len(dataloader), unit='image')

        window_size = self.opt['val'].get('window_size', 0)

        if window_size:
            test = partial(self.pad_test, window_size)
        else:
            test = self.nonpad_test

        cnt = 0

        for idx, val_data in enumerate(dataloader):
            if idx >= 60:
                break
            img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]

            self.feed_data(val_data)
            test()

            visuals = self.get_current_visuals()
            sr_img = tensor2img([visuals['result']], rgb2bgr=rgb2bgr)
            if 'gt' in visuals:
                gt_img = tensor2img([visuals['gt']], rgb2bgr=rgb2bgr)
                del self.gt

            # tentative for out of GPU memory
            del self.lq
            del self.output
            torch.cuda.empty_cache()

            if save_img:
                
                if self.opt['is_train']:
                    
                    save_img_path = osp.join(self.opt['path']['visualization'],
                                             img_name,
                                             f'{img_name}_{current_iter}.png')
                    
                    save_gt_img_path = osp.join(self.opt['path']['visualization'],
                                             img_name,
                                             f'{img_name}_{current_iter}_gt.png')
                else:
                    
                    save_img_path = osp.join(
                        self.opt['path']['visualization'], dataset_name,
                        f'{img_name}.png')
                    save_gt_img_path = osp.join(
                        self.opt['path']['visualization'], dataset_name,
                        f'{img_name}_gt.png')
                    
                imwrite(sr_img, save_img_path)
                imwrite(gt_img, save_gt_img_path)

            if with_metrics:
                # calculate metrics
                opt_metric = deepcopy(self.opt['val']['metrics'])
                if use_image:
                    for name, opt_ in opt_metric.items():
                        metric_type = opt_.pop('type')
                        self.metric_results[name] += getattr(
                            metric_module, metric_type)(sr_img, gt_img, **opt_)
                else:
                    for name, opt_ in opt_metric.items():
                        metric_type = opt_.pop('type')
                        self.metric_results[name] += getattr(
                            metric_module, metric_type)(visuals['result'], visuals['gt'], **opt_)

            cnt += 1

        current_metric = 0.
        if with_metrics:
            for metric in self.metric_results.keys():
                self.metric_results[metric] /= cnt
                current_metric = max(current_metric, self.metric_results[metric])

            self._log_validation_metric_values(current_iter, dataset_name,
                                               tb_logger)
        return current_metric


    def _log_validation_metric_values(self, current_iter, dataset_name,
                                      tb_logger):
        log_str = f'Validation {dataset_name},\t'
        for metric, value in self.metric_results.items():
            log_str += f'\t # {metric}: {value:.4f}'
            if metric == 'psnr' and value >= self.psnr_best:
                self.save(0, current_iter, best=True)
                self.psnr_best = value
        logger = get_root_logger()
        logger.info(log_str)
        if tb_logger:
            for metric, value in self.metric_results.items():
                tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)

    def get_current_visuals(self):
        out_dict = OrderedDict()
        out_dict['lq'] = self.lq.detach().cpu()
        out_dict['result'] = self.output.detach().cpu()
        if hasattr(self, 'gt'):
            out_dict['gt'] = self.gt.detach().cpu()
        return out_dict

    def save(self, epoch, current_iter, best=False):
        if self.ema_decay > 0:
            self.save_network([self.net_g, self.net_g_ema],
                              'net_g',
                              current_iter,
                              param_key=['params', 'params_ema'], best=best)
        else:
            self.save_network(self.net_g, 'net_g', current_iter, best=best)
        self.save_training_state(epoch, current_iter, best=best)