Spaces:
Runtime error
Runtime error
File size: 14,535 Bytes
f518bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import importlib
import torch
from collections import OrderedDict
from copy import deepcopy
from os import path as osp
from tqdm import tqdm
from basicsr.models.archs import define_network
from basicsr.models.base_model import BaseModel
from basicsr.utils import get_root_logger, imwrite, tensor2img
from huggingface_hub import PyTorchModelHubMixin
loss_module = importlib.import_module('basicsr.models.losses')
metric_module = importlib.import_module('basicsr.metrics')
import os
import random
import numpy as np
import cv2
import torch.nn.functional as F
from functools import partial
#from audtorch.metrics.functional import pearsonr
import torch.autograd as autograd
class Mixing_Augment:
def __init__(self, mixup_beta, use_identity, device):
self.dist = torch.distributions.beta.Beta(torch.tensor([mixup_beta]), torch.tensor([mixup_beta]))
self.device = device
self.use_identity = use_identity
self.augments = [self.mixup]
def mixup(self, target, input_):
lam = self.dist.rsample((1,1)).item()
r_index = torch.randperm(target.size(0)).to(self.device)
target = lam * target + (1-lam) * target[r_index, :]
input_ = lam * input_ + (1-lam) * input_[r_index, :]
return target, input_
def __call__(self, target, input_):
if self.use_identity:
augment = random.randint(0, len(self.augments))
if augment < len(self.augments):
target, input_ = self.augments[augment](target, input_)
else:
augment = random.randint(0, len(self.augments)-1)
target, input_ = self.augments[augment](target, input_)
return target, input_
class ImageCleanModel(BaseModel):
"""Base Deblur model for single image deblur."""
def __init__(self, opt):
super(ImageCleanModel, self).__init__(opt)
# define network
self.mixing_flag = self.opt['train']['mixing_augs'].get('mixup', False)
if self.mixing_flag:
mixup_beta = self.opt['train']['mixing_augs'].get('mixup_beta', 1.2)
use_identity = self.opt['train']['mixing_augs'].get('use_identity', False)
self.mixing_augmentation = Mixing_Augment(mixup_beta, use_identity, self.device)
self.net_g = define_network(deepcopy(opt['network_g']))
self.net_g = self.model_to_device(self.net_g)
self.print_network(self.net_g)
# load pretrained models
load_path = self.opt['path'].get('pretrain_network_g', None)
if load_path is not None:
self.load_network(self.net_g, load_path,
self.opt['path'].get('strict_load_g', True), param_key=self.opt['path'].get('param_key', 'params'))
if self.is_train:
self.init_training_settings()
self.psnr_best = -1
def init_training_settings(self):
self.net_g.train()
train_opt = self.opt['train']
self.ema_decay = train_opt.get('ema_decay', 0)
if self.ema_decay > 0:
logger = get_root_logger()
logger.info(
f'Use Exponential Moving Average with decay: {self.ema_decay}')
# define network net_g with Exponential Moving Average (EMA)
# net_g_ema is used only for testing on one GPU and saving
# There is no need to wrap with DistributedDataParallel
self.net_g_ema = define_network(self.opt['network_g']).to(
self.device)
# load pretrained model
load_path = self.opt['path'].get('pretrain_network_g', None)
if load_path is not None:
self.load_network(self.net_g_ema, load_path,
self.opt['path'].get('strict_load_g',
True), 'params_ema')
else:
self.model_ema(0) # copy net_g weight
self.net_g_ema.eval()
# define losses
if train_opt.get('pixel_opt'):
pixel_type = train_opt['pixel_opt'].pop('type')
cri_pix_cls = getattr(loss_module, pixel_type)
self.cri_pix = cri_pix_cls(**train_opt['pixel_opt']).to(
self.device)
else:
raise ValueError('pixel loss are None.')
if train_opt.get('seq_opt'):
# from audtorch.metrics.functional import pearsonr
# self.cri_seq = pearsonr
self.cri_seq = self.pearson_correlation_loss #
self.cri_celoss = torch.nn.CrossEntropyLoss()
# set up optimizers and schedulers
self.setup_optimizers()
self.setup_schedulers()
def pearson_correlation_loss(self, x1, x2):
assert x1.shape == x2.shape
b, c = x1.shape[:2]
dim = -1
x1, x2 = x1.reshape(b, -1), x2.reshape(b, -1)
x1_mean, x2_mean = x1.mean(dim=dim, keepdims=True), x2.mean(dim=dim, keepdims=True)
numerator = ((x1 - x1_mean) * (x2 - x2_mean)).sum( dim=dim, keepdims=True )
std1 = (x1 - x1_mean).pow(2).sum(dim=dim, keepdims=True).sqrt()
std2 = (x2 - x2_mean).pow(2).sum(dim=dim, keepdims=True).sqrt()
denominator = std1 * std2
corr = numerator.div(denominator + 1e-6)
return corr
def setup_optimizers(self):
train_opt = self.opt['train']
optim_params = []
for k, v in self.net_g.named_parameters():
if v.requires_grad:
optim_params.append(v)
else:
logger = get_root_logger()
logger.warning(f'Params {k} will not be optimized.')
optim_type = train_opt['optim_g'].pop('type')
if optim_type == 'Adam':
self.optimizer_g = torch.optim.Adam(optim_params, **train_opt['optim_g'])
elif optim_type == 'AdamW':
self.optimizer_g = torch.optim.AdamW(optim_params, **train_opt['optim_g'])
else:
raise NotImplementedError(
f'optimizer {optim_type} is not supperted yet.')
self.optimizers.append(self.optimizer_g)
def feed_train_data(self, data):
self.lq = data['lq'].to(self.device)
if 'gt' in data:
self.gt = data['gt'].to(self.device)
if 'label' in data:
self.label = data['label']
# self.label = torch.nn.functional.one_hot(data['label'], num_classes=3)
if self.mixing_flag:
self.gt, self.lq = self.mixing_augmentation(self.gt, self.lq)
def feed_data(self, data):
self.lq = data['lq'].to(self.device)
if 'gt' in data:
self.gt = data['gt'].to(self.device)
def check_inf_nan(self, x):
x[x.isnan()] = 0
x[x.isinf()] = 1e7
return x
def compute_correlation_loss(self, x1, x2):
b, c = x1.shape[0:2]
x1 = x1.view(b, -1)
x2 = x2.view(b, -1)
# print(x1, x2)
pearson = (1. - self.cri_seq(x1, x2)) / 2.
return pearson[~pearson.isnan()*~pearson.isinf()].mean()
def optimize_parameters(self, current_iter):
self.optimizer_g.zero_grad()
self.output = self.net_g(self.lq, )
loss_dict = OrderedDict()
# pixel loss
l_pix = self.cri_pix(self.output, self.gt)
loss_dict['l_pix'] = l_pix
'''
l_mask = self.cri_pix(self.pred_mask, self.gt - self.output.detach())
loss_dict['l_mask'] = l_mask
'''
l_pear = self.compute_correlation_loss(self.output, self.gt)
loss_dict['l_pear'] = l_pear
# l_pred = self.cri_celoss(self.pred, self.label.to(self.pred.device))
# loss_dict['l_pred'] = l_pred
# print("pear:", l_pear, "pix:", l_pix)
loss_total = l_pix + l_pear #+ 0.01*l_pred#+ l_mask
loss_total.backward()
if self.opt['train']['use_grad_clip']:
torch.nn.utils.clip_grad_norm_(self.net_g.parameters(), 0.01, error_if_nonfinite=False)
self.optimizer_g.step()
self.log_dict, self.loss_total = self.reduce_loss_dict(loss_dict)
self.loss_dict = loss_dict
if self.ema_decay > 0:
self.model_ema(decay=self.ema_decay)
def pad_test(self, window_size):
scale = self.opt.get('scale', 1)
mod_pad_h, mod_pad_w = 0, 0
_, _, h, w = self.lq.size()
if h % window_size != 0:
mod_pad_h = window_size - h % window_size
if w % window_size != 0:
mod_pad_w = window_size - w % window_size
img = F.pad(self.lq, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
self.nonpad_test(img)
_, _, h, w = self.output.size()
self.output = self.output[:, :, 0:h - mod_pad_h * scale, 0:w - mod_pad_w * scale]
def nonpad_test(self, img=None):
if img is None:
img = self.lq
if hasattr(self, 'net_g_ema'):
self.net_g_ema.eval()
with torch.no_grad():
pred = self.net_g_ema(img)
if isinstance(pred, list):
pred = pred[-1]
self.output = pred
else:
self.net_g.eval()
with torch.no_grad():
pred = self.net_g(img)
if isinstance(pred, list):
pred = pred[-1]
self.output = pred
self.net_g.train()
def dist_validation(self, dataloader, current_iter, tb_logger, save_img, rgb2bgr, use_image):
if os.environ['LOCAL_RANK'] == '0':
return self.nondist_validation(dataloader, current_iter, tb_logger, save_img, rgb2bgr, use_image)
else:
return 0.
def nondist_validation(self, dataloader, current_iter, tb_logger,
save_img, rgb2bgr, use_image):
dataset_name = dataloader.dataset.opt['name']
with_metrics = self.opt['val'].get('metrics') is not None
if with_metrics:
self.metric_results = {
metric: 0
for metric in self.opt['val']['metrics'].keys()
}
# pbar = tqdm(total=len(dataloader), unit='image')
window_size = self.opt['val'].get('window_size', 0)
if window_size:
test = partial(self.pad_test, window_size)
else:
test = self.nonpad_test
cnt = 0
for idx, val_data in enumerate(dataloader):
if idx >= 60:
break
img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0]
self.feed_data(val_data)
test()
visuals = self.get_current_visuals()
sr_img = tensor2img([visuals['result']], rgb2bgr=rgb2bgr)
if 'gt' in visuals:
gt_img = tensor2img([visuals['gt']], rgb2bgr=rgb2bgr)
del self.gt
# tentative for out of GPU memory
del self.lq
del self.output
torch.cuda.empty_cache()
if save_img:
if self.opt['is_train']:
save_img_path = osp.join(self.opt['path']['visualization'],
img_name,
f'{img_name}_{current_iter}.png')
save_gt_img_path = osp.join(self.opt['path']['visualization'],
img_name,
f'{img_name}_{current_iter}_gt.png')
else:
save_img_path = osp.join(
self.opt['path']['visualization'], dataset_name,
f'{img_name}.png')
save_gt_img_path = osp.join(
self.opt['path']['visualization'], dataset_name,
f'{img_name}_gt.png')
imwrite(sr_img, save_img_path)
imwrite(gt_img, save_gt_img_path)
if with_metrics:
# calculate metrics
opt_metric = deepcopy(self.opt['val']['metrics'])
if use_image:
for name, opt_ in opt_metric.items():
metric_type = opt_.pop('type')
self.metric_results[name] += getattr(
metric_module, metric_type)(sr_img, gt_img, **opt_)
else:
for name, opt_ in opt_metric.items():
metric_type = opt_.pop('type')
self.metric_results[name] += getattr(
metric_module, metric_type)(visuals['result'], visuals['gt'], **opt_)
cnt += 1
current_metric = 0.
if with_metrics:
for metric in self.metric_results.keys():
self.metric_results[metric] /= cnt
current_metric = max(current_metric, self.metric_results[metric])
self._log_validation_metric_values(current_iter, dataset_name,
tb_logger)
return current_metric
def _log_validation_metric_values(self, current_iter, dataset_name,
tb_logger):
log_str = f'Validation {dataset_name},\t'
for metric, value in self.metric_results.items():
log_str += f'\t # {metric}: {value:.4f}'
if metric == 'psnr' and value >= self.psnr_best:
self.save(0, current_iter, best=True)
self.psnr_best = value
logger = get_root_logger()
logger.info(log_str)
if tb_logger:
for metric, value in self.metric_results.items():
tb_logger.add_scalar(f'metrics/{metric}', value, current_iter)
def get_current_visuals(self):
out_dict = OrderedDict()
out_dict['lq'] = self.lq.detach().cpu()
out_dict['result'] = self.output.detach().cpu()
if hasattr(self, 'gt'):
out_dict['gt'] = self.gt.detach().cpu()
return out_dict
def save(self, epoch, current_iter, best=False):
if self.ema_decay > 0:
self.save_network([self.net_g, self.net_g_ema],
'net_g',
current_iter,
param_key=['params', 'params_ema'], best=best)
else:
self.save_network(self.net_g, 'net_g', current_iter, best=best)
self.save_training_state(epoch, current_iter, best=best)
|