Spaces:
Runtime error
Runtime error
File size: 1,339 Bytes
c7e6ba9 aa2d9c4 c7e6ba9 aa2d9c4 c7e6ba9 aa2d9c4 0b2d163 c7e6ba9 0b2d163 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import torch
import gradio as gr
import numpy as np
import torch.nn.functional as F
from Allweather.util import load_img
from basicsr.models.archs.histoformer_arch import Histoformer
model_restoration = Histoformer()
checkpoint = torch.load("Allweather/pretrained_models/net_g_real.pth")
model_restoration.load_state_dict(checkpoint['params'])
model_restoration.cuda()
model_restoration = nn.DataParallel(model_restoration)
def preprocess(file_, factor = 8):
img = np.float32(load_img(file_))/255.
img = torch.from_numpy(img).permute(2,0,1)
input_ = img.unsqueeze(0).cuda()
# Padding in case images are not multiples of 8
h,w = input_.shape[2], input_.shape[3]
H,W = ((h+factor)//factor)*factor, ((w+factor)//factor)*factor
padh = H-h if h%factor!=0 else 0
padw = W-w if w%factor!=0 else 0
input_ = F.pad(input_, (0,padw,0,padh), 'reflect')
return input_
def predict(input_img):
prediction = model_restoration(preprocess(input_img))
return input_img, prediction
gradio_app = gr.Interface(
predict,
inputs=gr.Image(label="Upload images with adverse weather degradations", sources=['upload', 'webcam'], type="pil"),
outputs=gr.Image(label="Processed Image"),
title="Image Restoration for All-in-one Adverse Weather",
)
if __name__ == "__main__":
gradio_app.launch() |