File size: 14,561 Bytes
f518bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
from torch.utils import data as data
from torchvision.transforms.functional import normalize

from basicsr.data.data_util import (paired_paths_from_folder,
                                    paired_DP_paths_from_folder,
                                    paired_paths_from_lmdb,
                                    paired_paths_from_meta_info_file)
from basicsr.data.transforms import augment, paired_random_crop, paired_random_crop_DP, random_augmentation
from basicsr.utils import FileClient, imfrombytes, img2tensor, padding, padding_DP, imfrombytesDP

import random
import numpy as np
import torch
import cv2

class Dataset_PairedImage(data.Dataset):
    """Paired image dataset for image restoration.

    Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and
    GT image pairs.

    There are three modes:
    1. 'lmdb': Use lmdb files.
        If opt['io_backend'] == lmdb.
    2. 'meta_info_file': Use meta information file to generate paths.
        If opt['io_backend'] != lmdb and opt['meta_info_file'] is not None.
    3. 'folder': Scan folders to generate paths.
        The rest.

    Args:
        opt (dict): Config for train datasets. It contains the following keys:
            dataroot_gt (str): Data root path for gt.
            dataroot_lq (str): Data root path for lq.
            meta_info_file (str): Path for meta information file.
            io_backend (dict): IO backend type and other kwarg.
            filename_tmpl (str): Template for each filename. Note that the
                template excludes the file extension. Default: '{}'.
            gt_size (int): Cropped patched size for gt patches.
            geometric_augs (bool): Use geometric augmentations.

            scale (bool): Scale, which will be added automatically.
            phase (str): 'train' or 'val'.
    """

    def __init__(self, opt):
        super(Dataset_PairedImage, self).__init__()
        self.opt = opt
        # file client (io backend)
        self.file_client = None
        self.io_backend_opt = opt['io_backend']
        self.mean = opt['mean'] if 'mean' in opt else None
        self.std = opt['std'] if 'std' in opt else None
        
        self.gt_folder, self.lq_folder = opt['dataroot_gt'], opt['dataroot_lq']
        if 'filename_tmpl' in opt:
            self.filename_tmpl = opt['filename_tmpl']
        else:
            self.filename_tmpl = '{}'

        if self.io_backend_opt['type'] == 'lmdb':
            self.io_backend_opt['db_paths'] = [self.lq_folder, self.gt_folder]
            self.io_backend_opt['client_keys'] = ['lq', 'gt']
            self.paths = paired_paths_from_lmdb(
                [self.lq_folder, self.gt_folder], ['lq', 'gt'])
        elif 'meta_info_file' in self.opt and self.opt[
                'meta_info_file'] is not None:
            self.paths = paired_paths_from_meta_info_file(
                [self.lq_folder, self.gt_folder], ['lq', 'gt'],
                self.opt['meta_info_file'], self.filename_tmpl)
        else:
            self.paths = paired_paths_from_folder(
                [self.lq_folder, self.gt_folder], ['lq', 'gt'],
                self.filename_tmpl)

        if self.opt['phase'] == 'train':
            self.geometric_augs = opt['geometric_augs']

    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(
                self.io_backend_opt.pop('type'), **self.io_backend_opt)

        scale = self.opt['scale']
        index = index % len(self.paths)
        # Load gt and lq images. Dimension order: HWC; channel order: BGR;
        # image range: [0, 1], float32.
        gt_path = self.paths[index]['gt_path']
        img_bytes = self.file_client.get(gt_path, 'gt')
        try:
            img_gt = imfrombytes(img_bytes, float32=True)
        except:
            raise Exception("gt path {} not working".format(gt_path))

        lq_path = self.paths[index]['lq_path']
        img_bytes = self.file_client.get(lq_path, 'lq')
        try:
            img_lq = imfrombytes(img_bytes, float32=True)
        except:
            raise Exception("lq path {} not working".format(lq_path))

        # augmentation for training
        if self.opt['phase'] == 'train':
            gt_size = self.opt['gt_size']
            # padding
            img_gt, img_lq = padding(img_gt, img_lq, gt_size)

            # random crop
            img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale,
                                                gt_path)

            # flip, rotation augmentations
            if self.geometric_augs:
                img_gt, img_lq = random_augmentation(img_gt, img_lq)
            
        # BGR to RGB, HWC to CHW, numpy to tensor
        img_gt, img_lq = img2tensor([img_gt, img_lq],
                                    bgr2rgb=True,
                                    float32=True)
        # normalize
        if self.mean is not None or self.std is not None:
            normalize(img_lq, self.mean, self.std, inplace=True)
            normalize(img_gt, self.mean, self.std, inplace=True)
        label = self.get_label(lq_path,)
        return {
            'lq': img_lq,
            'gt': img_gt,
            'lq_path': lq_path,
            'gt_path': gt_path,
            'label': label
        }
    def get_label(self, lq_path):
        img_name = lq_path.split("/")[-1]
        if "im_" in img_name:
            return 0
        elif '.jpg' in img_name:
            return 1
        elif 'rain' in img_name:
            return 2
        else:
            return 4
         
    def __len__(self):
        return len(self.paths)

class Dataset_GaussianDenoising(data.Dataset):
    """Paired image dataset for image restoration.

    Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and
    GT image pairs.

    There are three modes:
    1. 'lmdb': Use lmdb files.
        If opt['io_backend'] == lmdb.
    2. 'meta_info_file': Use meta information file to generate paths.
        If opt['io_backend'] != lmdb and opt['meta_info_file'] is not None.
    3. 'folder': Scan folders to generate paths.
        The rest.

    Args:
        opt (dict): Config for train datasets. It contains the following keys:
            dataroot_gt (str): Data root path for gt.
            meta_info_file (str): Path for meta information file.
            io_backend (dict): IO backend type and other kwarg.
            gt_size (int): Cropped patched size for gt patches.
            use_flip (bool): Use horizontal flips.
            use_rot (bool): Use rotation (use vertical flip and transposing h
                and w for implementation).

            scale (bool): Scale, which will be added automatically.
            phase (str): 'train' or 'val'.
    """

    def __init__(self, opt):
        super(Dataset_GaussianDenoising, self).__init__()
        self.opt = opt

        if self.opt['phase'] == 'train':
            self.sigma_type  = opt['sigma_type']
            self.sigma_range = opt['sigma_range']
            assert self.sigma_type in ['constant', 'random', 'choice']
        else:
            self.sigma_test = opt['sigma_test']
        self.in_ch = opt['in_ch']

        # file client (io backend)
        self.file_client = None
        self.io_backend_opt = opt['io_backend']
        self.mean = opt['mean'] if 'mean' in opt else None
        self.std = opt['std'] if 'std' in opt else None        

        self.gt_folder = opt['dataroot_gt']

        if self.io_backend_opt['type'] == 'lmdb':
            self.io_backend_opt['db_paths'] = [self.gt_folder]
            self.io_backend_opt['client_keys'] = ['gt']
            self.paths = paths_from_lmdb(self.gt_folder)
        elif 'meta_info_file' in self.opt:
            with open(self.opt['meta_info_file'], 'r') as fin:
                self.paths = [
                    osp.join(self.gt_folder,
                             line.split(' ')[0]) for line in fin
                ]
        else:
            self.paths = sorted(list(scandir(self.gt_folder, full_path=True)))

        if self.opt['phase'] == 'train':
            self.geometric_augs = self.opt['geometric_augs']

    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(
                self.io_backend_opt.pop('type'), **self.io_backend_opt)

        scale = self.opt['scale']
        index = index % len(self.paths)
        # Load gt and lq images. Dimension order: HWC; channel order: BGR;
        # image range: [0, 1], float32.
        gt_path = self.paths[index]['gt_path']
        img_bytes = self.file_client.get(gt_path, 'gt')

        if self.in_ch == 3:
            try:
                img_gt = imfrombytes(img_bytes, float32=True)
            except:
                raise Exception("gt path {} not working".format(gt_path))

            img_gt = cv2.cvtColor(img_gt, cv2.COLOR_BGR2RGB)
        else:
            try:
                img_gt = imfrombytes(img_bytes, flag='grayscale', float32=True)
            except:
                raise Exception("gt path {} not working".format(gt_path))

            img_gt = np.expand_dims(img_gt, axis=2)
        img_lq = img_gt.copy()


        # augmentation for training
        if self.opt['phase'] == 'train':
            gt_size = self.opt['gt_size']
            # padding
            img_gt, img_lq = padding(img_gt, img_lq, gt_size)

            # random crop
            img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale,
                                                gt_path)
            # flip, rotation
            if self.geometric_augs:
                img_gt, img_lq = random_augmentation(img_gt, img_lq)

            img_gt, img_lq = img2tensor([img_gt, img_lq],
                                        bgr2rgb=False,
                                        float32=True)


            if self.sigma_type == 'constant':
                sigma_value = self.sigma_range
            elif self.sigma_type == 'random':
                sigma_value = random.uniform(self.sigma_range[0], self.sigma_range[1])
            elif self.sigma_type == 'choice':
                sigma_value = random.choice(self.sigma_range)

            noise_level = torch.FloatTensor([sigma_value])/255.0
            # noise_level_map = torch.ones((1, img_lq.size(1), img_lq.size(2))).mul_(noise_level).float()
            noise = torch.randn(img_lq.size()).mul_(noise_level).float()
            img_lq.add_(noise)

        else:            
            np.random.seed(seed=0)
            img_lq += np.random.normal(0, self.sigma_test/255.0, img_lq.shape)
            # noise_level_map = torch.ones((1, img_lq.shape[0], img_lq.shape[1])).mul_(self.sigma_test/255.0).float()

            img_gt, img_lq = img2tensor([img_gt, img_lq],
                            bgr2rgb=False,
                            float32=True)

        return {
            'lq': img_lq,
            'gt': img_gt,
            'lq_path': gt_path,
            'gt_path': gt_path
        }

    def __len__(self):
        return len(self.paths)

class Dataset_DefocusDeblur_DualPixel_16bit(data.Dataset):
    def __init__(self, opt):
        super(Dataset_DefocusDeblur_DualPixel_16bit, self).__init__()
        self.opt = opt
        # file client (io backend)
        self.file_client = None
        self.io_backend_opt = opt['io_backend']
        self.mean = opt['mean'] if 'mean' in opt else None
        self.std = opt['std'] if 'std' in opt else None
        
        self.gt_folder, self.lqL_folder, self.lqR_folder = opt['dataroot_gt'], opt['dataroot_lqL'], opt['dataroot_lqR']
        if 'filename_tmpl' in opt:
            self.filename_tmpl = opt['filename_tmpl']
        else:
            self.filename_tmpl = '{}'

        self.paths = paired_DP_paths_from_folder(
            [self.lqL_folder, self.lqR_folder, self.gt_folder], ['lqL', 'lqR', 'gt'],
            self.filename_tmpl)

        if self.opt['phase'] == 'train':
            self.geometric_augs = self.opt['geometric_augs']

    def __getitem__(self, index):
        if self.file_client is None:
            self.file_client = FileClient(
                self.io_backend_opt.pop('type'), **self.io_backend_opt)

        scale = self.opt['scale']
        index = index % len(self.paths)
        # Load gt and lq images. Dimension order: HWC; channel order: BGR;
        # image range: [0, 1], float32.
        gt_path = self.paths[index]['gt_path']
        img_bytes = self.file_client.get(gt_path, 'gt')
        try:
            img_gt = imfrombytesDP(img_bytes, float32=True)
        except:
            raise Exception("gt path {} not working".format(gt_path))

        lqL_path = self.paths[index]['lqL_path']
        img_bytes = self.file_client.get(lqL_path, 'lqL')
        try:
            img_lqL = imfrombytesDP(img_bytes, float32=True)
        except:
            raise Exception("lqL path {} not working".format(lqL_path))

        lqR_path = self.paths[index]['lqR_path']
        img_bytes = self.file_client.get(lqR_path, 'lqR')
        try:
            img_lqR = imfrombytesDP(img_bytes, float32=True)
        except:
            raise Exception("lqR path {} not working".format(lqR_path))


        # augmentation for training
        if self.opt['phase'] == 'train':
            gt_size = self.opt['gt_size']
            # padding
            img_lqL, img_lqR, img_gt = padding_DP(img_lqL, img_lqR, img_gt, gt_size)

            # random crop
            img_lqL, img_lqR, img_gt = paired_random_crop_DP(img_lqL, img_lqR, img_gt, gt_size, scale, gt_path)
            
            # flip, rotation            
            if self.geometric_augs:
                img_lqL, img_lqR, img_gt = random_augmentation(img_lqL, img_lqR, img_gt)
        # TODO: color space transform
        # BGR to RGB, HWC to CHW, numpy to tensor
        img_lqL, img_lqR, img_gt = img2tensor([img_lqL, img_lqR, img_gt],
                                    bgr2rgb=True,
                                    float32=True)
        # normalize
        if self.mean is not None or self.std is not None:
            normalize(img_lqL, self.mean, self.std, inplace=True)
            normalize(img_lqR, self.mean, self.std, inplace=True)
            normalize(img_gt, self.mean, self.std, inplace=True)

        img_lq = torch.cat([img_lqL, img_lqR], 0)
        
        return {
            'lq': img_lq,
            'gt': img_gt,
            'lq_path': lqL_path,
            'gt_path': gt_path
        }

    def __len__(self):
        return len(self.paths)