Spaces:
Runtime error
Runtime error
File size: 14,561 Bytes
f518bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
from torch.utils import data as data
from torchvision.transforms.functional import normalize
from basicsr.data.data_util import (paired_paths_from_folder,
paired_DP_paths_from_folder,
paired_paths_from_lmdb,
paired_paths_from_meta_info_file)
from basicsr.data.transforms import augment, paired_random_crop, paired_random_crop_DP, random_augmentation
from basicsr.utils import FileClient, imfrombytes, img2tensor, padding, padding_DP, imfrombytesDP
import random
import numpy as np
import torch
import cv2
class Dataset_PairedImage(data.Dataset):
"""Paired image dataset for image restoration.
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and
GT image pairs.
There are three modes:
1. 'lmdb': Use lmdb files.
If opt['io_backend'] == lmdb.
2. 'meta_info_file': Use meta information file to generate paths.
If opt['io_backend'] != lmdb and opt['meta_info_file'] is not None.
3. 'folder': Scan folders to generate paths.
The rest.
Args:
opt (dict): Config for train datasets. It contains the following keys:
dataroot_gt (str): Data root path for gt.
dataroot_lq (str): Data root path for lq.
meta_info_file (str): Path for meta information file.
io_backend (dict): IO backend type and other kwarg.
filename_tmpl (str): Template for each filename. Note that the
template excludes the file extension. Default: '{}'.
gt_size (int): Cropped patched size for gt patches.
geometric_augs (bool): Use geometric augmentations.
scale (bool): Scale, which will be added automatically.
phase (str): 'train' or 'val'.
"""
def __init__(self, opt):
super(Dataset_PairedImage, self).__init__()
self.opt = opt
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.mean = opt['mean'] if 'mean' in opt else None
self.std = opt['std'] if 'std' in opt else None
self.gt_folder, self.lq_folder = opt['dataroot_gt'], opt['dataroot_lq']
if 'filename_tmpl' in opt:
self.filename_tmpl = opt['filename_tmpl']
else:
self.filename_tmpl = '{}'
if self.io_backend_opt['type'] == 'lmdb':
self.io_backend_opt['db_paths'] = [self.lq_folder, self.gt_folder]
self.io_backend_opt['client_keys'] = ['lq', 'gt']
self.paths = paired_paths_from_lmdb(
[self.lq_folder, self.gt_folder], ['lq', 'gt'])
elif 'meta_info_file' in self.opt and self.opt[
'meta_info_file'] is not None:
self.paths = paired_paths_from_meta_info_file(
[self.lq_folder, self.gt_folder], ['lq', 'gt'],
self.opt['meta_info_file'], self.filename_tmpl)
else:
self.paths = paired_paths_from_folder(
[self.lq_folder, self.gt_folder], ['lq', 'gt'],
self.filename_tmpl)
if self.opt['phase'] == 'train':
self.geometric_augs = opt['geometric_augs']
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(
self.io_backend_opt.pop('type'), **self.io_backend_opt)
scale = self.opt['scale']
index = index % len(self.paths)
# Load gt and lq images. Dimension order: HWC; channel order: BGR;
# image range: [0, 1], float32.
gt_path = self.paths[index]['gt_path']
img_bytes = self.file_client.get(gt_path, 'gt')
try:
img_gt = imfrombytes(img_bytes, float32=True)
except:
raise Exception("gt path {} not working".format(gt_path))
lq_path = self.paths[index]['lq_path']
img_bytes = self.file_client.get(lq_path, 'lq')
try:
img_lq = imfrombytes(img_bytes, float32=True)
except:
raise Exception("lq path {} not working".format(lq_path))
# augmentation for training
if self.opt['phase'] == 'train':
gt_size = self.opt['gt_size']
# padding
img_gt, img_lq = padding(img_gt, img_lq, gt_size)
# random crop
img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale,
gt_path)
# flip, rotation augmentations
if self.geometric_augs:
img_gt, img_lq = random_augmentation(img_gt, img_lq)
# BGR to RGB, HWC to CHW, numpy to tensor
img_gt, img_lq = img2tensor([img_gt, img_lq],
bgr2rgb=True,
float32=True)
# normalize
if self.mean is not None or self.std is not None:
normalize(img_lq, self.mean, self.std, inplace=True)
normalize(img_gt, self.mean, self.std, inplace=True)
label = self.get_label(lq_path,)
return {
'lq': img_lq,
'gt': img_gt,
'lq_path': lq_path,
'gt_path': gt_path,
'label': label
}
def get_label(self, lq_path):
img_name = lq_path.split("/")[-1]
if "im_" in img_name:
return 0
elif '.jpg' in img_name:
return 1
elif 'rain' in img_name:
return 2
else:
return 4
def __len__(self):
return len(self.paths)
class Dataset_GaussianDenoising(data.Dataset):
"""Paired image dataset for image restoration.
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and
GT image pairs.
There are three modes:
1. 'lmdb': Use lmdb files.
If opt['io_backend'] == lmdb.
2. 'meta_info_file': Use meta information file to generate paths.
If opt['io_backend'] != lmdb and opt['meta_info_file'] is not None.
3. 'folder': Scan folders to generate paths.
The rest.
Args:
opt (dict): Config for train datasets. It contains the following keys:
dataroot_gt (str): Data root path for gt.
meta_info_file (str): Path for meta information file.
io_backend (dict): IO backend type and other kwarg.
gt_size (int): Cropped patched size for gt patches.
use_flip (bool): Use horizontal flips.
use_rot (bool): Use rotation (use vertical flip and transposing h
and w for implementation).
scale (bool): Scale, which will be added automatically.
phase (str): 'train' or 'val'.
"""
def __init__(self, opt):
super(Dataset_GaussianDenoising, self).__init__()
self.opt = opt
if self.opt['phase'] == 'train':
self.sigma_type = opt['sigma_type']
self.sigma_range = opt['sigma_range']
assert self.sigma_type in ['constant', 'random', 'choice']
else:
self.sigma_test = opt['sigma_test']
self.in_ch = opt['in_ch']
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.mean = opt['mean'] if 'mean' in opt else None
self.std = opt['std'] if 'std' in opt else None
self.gt_folder = opt['dataroot_gt']
if self.io_backend_opt['type'] == 'lmdb':
self.io_backend_opt['db_paths'] = [self.gt_folder]
self.io_backend_opt['client_keys'] = ['gt']
self.paths = paths_from_lmdb(self.gt_folder)
elif 'meta_info_file' in self.opt:
with open(self.opt['meta_info_file'], 'r') as fin:
self.paths = [
osp.join(self.gt_folder,
line.split(' ')[0]) for line in fin
]
else:
self.paths = sorted(list(scandir(self.gt_folder, full_path=True)))
if self.opt['phase'] == 'train':
self.geometric_augs = self.opt['geometric_augs']
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(
self.io_backend_opt.pop('type'), **self.io_backend_opt)
scale = self.opt['scale']
index = index % len(self.paths)
# Load gt and lq images. Dimension order: HWC; channel order: BGR;
# image range: [0, 1], float32.
gt_path = self.paths[index]['gt_path']
img_bytes = self.file_client.get(gt_path, 'gt')
if self.in_ch == 3:
try:
img_gt = imfrombytes(img_bytes, float32=True)
except:
raise Exception("gt path {} not working".format(gt_path))
img_gt = cv2.cvtColor(img_gt, cv2.COLOR_BGR2RGB)
else:
try:
img_gt = imfrombytes(img_bytes, flag='grayscale', float32=True)
except:
raise Exception("gt path {} not working".format(gt_path))
img_gt = np.expand_dims(img_gt, axis=2)
img_lq = img_gt.copy()
# augmentation for training
if self.opt['phase'] == 'train':
gt_size = self.opt['gt_size']
# padding
img_gt, img_lq = padding(img_gt, img_lq, gt_size)
# random crop
img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale,
gt_path)
# flip, rotation
if self.geometric_augs:
img_gt, img_lq = random_augmentation(img_gt, img_lq)
img_gt, img_lq = img2tensor([img_gt, img_lq],
bgr2rgb=False,
float32=True)
if self.sigma_type == 'constant':
sigma_value = self.sigma_range
elif self.sigma_type == 'random':
sigma_value = random.uniform(self.sigma_range[0], self.sigma_range[1])
elif self.sigma_type == 'choice':
sigma_value = random.choice(self.sigma_range)
noise_level = torch.FloatTensor([sigma_value])/255.0
# noise_level_map = torch.ones((1, img_lq.size(1), img_lq.size(2))).mul_(noise_level).float()
noise = torch.randn(img_lq.size()).mul_(noise_level).float()
img_lq.add_(noise)
else:
np.random.seed(seed=0)
img_lq += np.random.normal(0, self.sigma_test/255.0, img_lq.shape)
# noise_level_map = torch.ones((1, img_lq.shape[0], img_lq.shape[1])).mul_(self.sigma_test/255.0).float()
img_gt, img_lq = img2tensor([img_gt, img_lq],
bgr2rgb=False,
float32=True)
return {
'lq': img_lq,
'gt': img_gt,
'lq_path': gt_path,
'gt_path': gt_path
}
def __len__(self):
return len(self.paths)
class Dataset_DefocusDeblur_DualPixel_16bit(data.Dataset):
def __init__(self, opt):
super(Dataset_DefocusDeblur_DualPixel_16bit, self).__init__()
self.opt = opt
# file client (io backend)
self.file_client = None
self.io_backend_opt = opt['io_backend']
self.mean = opt['mean'] if 'mean' in opt else None
self.std = opt['std'] if 'std' in opt else None
self.gt_folder, self.lqL_folder, self.lqR_folder = opt['dataroot_gt'], opt['dataroot_lqL'], opt['dataroot_lqR']
if 'filename_tmpl' in opt:
self.filename_tmpl = opt['filename_tmpl']
else:
self.filename_tmpl = '{}'
self.paths = paired_DP_paths_from_folder(
[self.lqL_folder, self.lqR_folder, self.gt_folder], ['lqL', 'lqR', 'gt'],
self.filename_tmpl)
if self.opt['phase'] == 'train':
self.geometric_augs = self.opt['geometric_augs']
def __getitem__(self, index):
if self.file_client is None:
self.file_client = FileClient(
self.io_backend_opt.pop('type'), **self.io_backend_opt)
scale = self.opt['scale']
index = index % len(self.paths)
# Load gt and lq images. Dimension order: HWC; channel order: BGR;
# image range: [0, 1], float32.
gt_path = self.paths[index]['gt_path']
img_bytes = self.file_client.get(gt_path, 'gt')
try:
img_gt = imfrombytesDP(img_bytes, float32=True)
except:
raise Exception("gt path {} not working".format(gt_path))
lqL_path = self.paths[index]['lqL_path']
img_bytes = self.file_client.get(lqL_path, 'lqL')
try:
img_lqL = imfrombytesDP(img_bytes, float32=True)
except:
raise Exception("lqL path {} not working".format(lqL_path))
lqR_path = self.paths[index]['lqR_path']
img_bytes = self.file_client.get(lqR_path, 'lqR')
try:
img_lqR = imfrombytesDP(img_bytes, float32=True)
except:
raise Exception("lqR path {} not working".format(lqR_path))
# augmentation for training
if self.opt['phase'] == 'train':
gt_size = self.opt['gt_size']
# padding
img_lqL, img_lqR, img_gt = padding_DP(img_lqL, img_lqR, img_gt, gt_size)
# random crop
img_lqL, img_lqR, img_gt = paired_random_crop_DP(img_lqL, img_lqR, img_gt, gt_size, scale, gt_path)
# flip, rotation
if self.geometric_augs:
img_lqL, img_lqR, img_gt = random_augmentation(img_lqL, img_lqR, img_gt)
# TODO: color space transform
# BGR to RGB, HWC to CHW, numpy to tensor
img_lqL, img_lqR, img_gt = img2tensor([img_lqL, img_lqR, img_gt],
bgr2rgb=True,
float32=True)
# normalize
if self.mean is not None or self.std is not None:
normalize(img_lqL, self.mean, self.std, inplace=True)
normalize(img_lqR, self.mean, self.std, inplace=True)
normalize(img_gt, self.mean, self.std, inplace=True)
img_lq = torch.cat([img_lqL, img_lqR], 0)
return {
'lq': img_lq,
'gt': img_gt,
'lq_path': lqL_path,
'gt_path': gt_path
}
def __len__(self):
return len(self.paths)
|