File size: 4,152 Bytes
f518bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import torch
from torch import nn as nn
from torch.nn import functional as F
import numpy as np

from basicsr.models.losses.loss_util import weighted_loss

_reduction_modes = ['none', 'mean', 'sum']


@weighted_loss
def l1_loss(pred, target):
    return F.l1_loss(pred, target, reduction='none')


@weighted_loss
def mse_loss(pred, target):
    return F.mse_loss(pred, target, reduction='none')


# @weighted_loss
# def charbonnier_loss(pred, target, eps=1e-12):
#     return torch.sqrt((pred - target)**2 + eps)


class L1Loss(nn.Module):
    """L1 (mean absolute error, MAE) loss.

    Args:
        loss_weight (float): Loss weight for L1 loss. Default: 1.0.
        reduction (str): Specifies the reduction to apply to the output.
            Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
    """

    def __init__(self, loss_weight=1.0, reduction='mean'):
        super(L1Loss, self).__init__()
        if reduction not in ['none', 'mean', 'sum']:
            raise ValueError(f'Unsupported reduction mode: {reduction}. '
                             f'Supported ones are: {_reduction_modes}')

        self.loss_weight = loss_weight
        self.reduction = reduction

    def forward(self, pred, target, weight=None, **kwargs):
        """
        Args:
            pred (Tensor): of shape (N, C, H, W). Predicted tensor.
            target (Tensor): of shape (N, C, H, W). Ground truth tensor.
            weight (Tensor, optional): of shape (N, C, H, W). Element-wise
                weights. Default: None.
        """
        return self.loss_weight * l1_loss(
            pred, target, weight, reduction=self.reduction)

class MSELoss(nn.Module):
    """MSE (L2) loss.

    Args:
        loss_weight (float): Loss weight for MSE loss. Default: 1.0.
        reduction (str): Specifies the reduction to apply to the output.
            Supported choices are 'none' | 'mean' | 'sum'. Default: 'mean'.
    """

    def __init__(self, loss_weight=1.0, reduction='mean'):
        super(MSELoss, self).__init__()
        if reduction not in ['none', 'mean', 'sum']:
            raise ValueError(f'Unsupported reduction mode: {reduction}. '
                             f'Supported ones are: {_reduction_modes}')

        self.loss_weight = loss_weight
        self.reduction = reduction

    def forward(self, pred, target, weight=None, **kwargs):
        """
        Args:
            pred (Tensor): of shape (N, C, H, W). Predicted tensor.
            target (Tensor): of shape (N, C, H, W). Ground truth tensor.
            weight (Tensor, optional): of shape (N, C, H, W). Element-wise
                weights. Default: None.
        """
        return self.loss_weight * mse_loss(
            pred, target, weight, reduction=self.reduction)

class PSNRLoss(nn.Module):

    def __init__(self, loss_weight=1.0, reduction='mean', toY=False):
        super(PSNRLoss, self).__init__()
        assert reduction == 'mean'
        self.loss_weight = loss_weight
        self.scale = 10 / np.log(10)
        self.toY = toY
        self.coef = torch.tensor([65.481, 128.553, 24.966]).reshape(1, 3, 1, 1)
        self.first = True

    def forward(self, pred, target):
        assert len(pred.size()) == 4
        if self.toY:
            if self.first:
                self.coef = self.coef.to(pred.device)
                self.first = False

            pred = (pred * self.coef).sum(dim=1).unsqueeze(dim=1) + 16.
            target = (target * self.coef).sum(dim=1).unsqueeze(dim=1) + 16.

            pred, target = pred / 255., target / 255.
            pass
        assert len(pred.size()) == 4

        return self.loss_weight * self.scale * torch.log(((pred - target) ** 2).mean(dim=(1, 2, 3)) + 1e-8).mean()

class CharbonnierLoss(nn.Module):
    """Charbonnier Loss (L1)"""

    def __init__(self, loss_weight=1.0, reduction='mean', eps=1e-3):
        super(CharbonnierLoss, self).__init__()
        self.eps = eps

    def forward(self, x, y):
        diff = x - y
        # loss = torch.sum(torch.sqrt(diff * diff + self.eps))
        loss = torch.mean(torch.sqrt((diff * diff) + (self.eps*self.eps)))
        return loss