Spaces:
Runtime error
Runtime error
File size: 8,238 Bytes
f518bf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import math
from collections import Counter
from torch.optim.lr_scheduler import _LRScheduler
import torch
class MultiStepRestartLR(_LRScheduler):
""" MultiStep with restarts learning rate scheme.
Args:
optimizer (torch.nn.optimizer): Torch optimizer.
milestones (list): Iterations that will decrease learning rate.
gamma (float): Decrease ratio. Default: 0.1.
restarts (list): Restart iterations. Default: [0].
restart_weights (list): Restart weights at each restart iteration.
Default: [1].
last_epoch (int): Used in _LRScheduler. Default: -1.
"""
def __init__(self,
optimizer,
milestones,
gamma=0.1,
restarts=(0, ),
restart_weights=(1, ),
last_epoch=-1):
self.milestones = Counter(milestones)
self.gamma = gamma
self.restarts = restarts
self.restart_weights = restart_weights
assert len(self.restarts) == len(
self.restart_weights), 'restarts and their weights do not match.'
super(MultiStepRestartLR, self).__init__(optimizer, last_epoch)
def get_lr(self):
if self.last_epoch in self.restarts:
weight = self.restart_weights[self.restarts.index(self.last_epoch)]
return [
group['initial_lr'] * weight
for group in self.optimizer.param_groups
]
if self.last_epoch not in self.milestones:
return [group['lr'] for group in self.optimizer.param_groups]
return [
group['lr'] * self.gamma**self.milestones[self.last_epoch]
for group in self.optimizer.param_groups
]
class LinearLR(_LRScheduler):
"""
Args:
optimizer (torch.nn.optimizer): Torch optimizer.
milestones (list): Iterations that will decrease learning rate.
gamma (float): Decrease ratio. Default: 0.1.
last_epoch (int): Used in _LRScheduler. Default: -1.
"""
def __init__(self,
optimizer,
total_iter,
last_epoch=-1):
self.total_iter = total_iter
super(LinearLR, self).__init__(optimizer, last_epoch)
def get_lr(self):
process = self.last_epoch / self.total_iter
weight = (1 - process)
# print('get lr ', [weight * group['initial_lr'] for group in self.optimizer.param_groups])
return [weight * group['initial_lr'] for group in self.optimizer.param_groups]
class VibrateLR(_LRScheduler):
"""
Args:
optimizer (torch.nn.optimizer): Torch optimizer.
milestones (list): Iterations that will decrease learning rate.
gamma (float): Decrease ratio. Default: 0.1.
last_epoch (int): Used in _LRScheduler. Default: -1.
"""
def __init__(self,
optimizer,
total_iter,
last_epoch=-1):
self.total_iter = total_iter
super(VibrateLR, self).__init__(optimizer, last_epoch)
def get_lr(self):
process = self.last_epoch / self.total_iter
f = 0.1
if process < 3 / 8:
f = 1 - process * 8 / 3
elif process < 5 / 8:
f = 0.2
T = self.total_iter // 80
Th = T // 2
t = self.last_epoch % T
f2 = t / Th
if t >= Th:
f2 = 2 - f2
weight = f * f2
if self.last_epoch < Th:
weight = max(0.1, weight)
# print('f {}, T {}, Th {}, t {}, f2 {}'.format(f, T, Th, t, f2))
return [weight * group['initial_lr'] for group in self.optimizer.param_groups]
def get_position_from_periods(iteration, cumulative_period):
"""Get the position from a period list.
It will return the index of the right-closest number in the period list.
For example, the cumulative_period = [100, 200, 300, 400],
if iteration == 50, return 0;
if iteration == 210, return 2;
if iteration == 300, return 2.
Args:
iteration (int): Current iteration.
cumulative_period (list[int]): Cumulative period list.
Returns:
int: The position of the right-closest number in the period list.
"""
for i, period in enumerate(cumulative_period):
if iteration <= period:
return i
class CosineAnnealingRestartLR(_LRScheduler):
""" Cosine annealing with restarts learning rate scheme.
An example of config:
periods = [10, 10, 10, 10]
restart_weights = [1, 0.5, 0.5, 0.5]
eta_min=1e-7
It has four cycles, each has 10 iterations. At 10th, 20th, 30th, the
scheduler will restart with the weights in restart_weights.
Args:
optimizer (torch.nn.optimizer): Torch optimizer.
periods (list): Period for each cosine anneling cycle.
restart_weights (list): Restart weights at each restart iteration.
Default: [1].
eta_min (float): The mimimum lr. Default: 0.
last_epoch (int): Used in _LRScheduler. Default: -1.
"""
def __init__(self,
optimizer,
periods,
restart_weights=(1, ),
eta_min=0,
last_epoch=-1):
self.periods = periods
self.restart_weights = restart_weights
self.eta_min = eta_min
assert (len(self.periods) == len(self.restart_weights)
), 'periods and restart_weights should have the same length.'
self.cumulative_period = [
sum(self.periods[0:i + 1]) for i in range(0, len(self.periods))
]
super(CosineAnnealingRestartLR, self).__init__(optimizer, last_epoch)
def get_lr(self):
idx = get_position_from_periods(self.last_epoch,
self.cumulative_period)
current_weight = self.restart_weights[idx]
nearest_restart = 0 if idx == 0 else self.cumulative_period[idx - 1]
current_period = self.periods[idx]
return [
self.eta_min + current_weight * 0.5 * (base_lr - self.eta_min) *
(1 + math.cos(math.pi * (
(self.last_epoch - nearest_restart) / current_period)))
for base_lr in self.base_lrs
]
class CosineAnnealingRestartCyclicLR(_LRScheduler):
""" Cosine annealing with restarts learning rate scheme.
An example of config:
periods = [10, 10, 10, 10]
restart_weights = [1, 0.5, 0.5, 0.5]
eta_min=1e-7
It has four cycles, each has 10 iterations. At 10th, 20th, 30th, the
scheduler will restart with the weights in restart_weights.
Args:
optimizer (torch.nn.optimizer): Torch optimizer.
periods (list): Period for each cosine anneling cycle.
restart_weights (list): Restart weights at each restart iteration.
Default: [1].
eta_min (float): The mimimum lr. Default: 0.
last_epoch (int): Used in _LRScheduler. Default: -1.
"""
def __init__(self,
optimizer,
periods,
restart_weights=(1, ),
eta_mins=(0, ),
last_epoch=-1):
self.periods = periods
self.restart_weights = restart_weights
self.eta_mins = eta_mins
assert (len(self.periods) == len(self.restart_weights)
), 'periods and restart_weights should have the same length.'
self.cumulative_period = [
sum(self.periods[0:i + 1]) for i in range(0, len(self.periods))
]
super(CosineAnnealingRestartCyclicLR, self).__init__(optimizer, last_epoch)
def get_lr(self):
idx = get_position_from_periods(self.last_epoch,
self.cumulative_period)
current_weight = self.restart_weights[idx]
nearest_restart = 0 if idx == 0 else self.cumulative_period[idx - 1]
current_period = self.periods[idx]
eta_min = self.eta_mins[idx]
return [
eta_min + current_weight * 0.5 * (base_lr - eta_min) *
(1 + math.cos(math.pi * (
(self.last_epoch - nearest_restart) / current_period)))
for base_lr in self.base_lrs
]
|