File size: 8,238 Bytes
f518bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import math
from collections import Counter
from torch.optim.lr_scheduler import _LRScheduler
import torch


class MultiStepRestartLR(_LRScheduler):
    """ MultiStep with restarts learning rate scheme.

    Args:
        optimizer (torch.nn.optimizer): Torch optimizer.
        milestones (list): Iterations that will decrease learning rate.
        gamma (float): Decrease ratio. Default: 0.1.
        restarts (list): Restart iterations. Default: [0].
        restart_weights (list): Restart weights at each restart iteration.
            Default: [1].
        last_epoch (int): Used in _LRScheduler. Default: -1.
    """

    def __init__(self,
                 optimizer,
                 milestones,
                 gamma=0.1,
                 restarts=(0, ),
                 restart_weights=(1, ),
                 last_epoch=-1):
        self.milestones = Counter(milestones)
        self.gamma = gamma
        self.restarts = restarts
        self.restart_weights = restart_weights
        assert len(self.restarts) == len(
            self.restart_weights), 'restarts and their weights do not match.'
        super(MultiStepRestartLR, self).__init__(optimizer, last_epoch)

    def get_lr(self):
        if self.last_epoch in self.restarts:
            weight = self.restart_weights[self.restarts.index(self.last_epoch)]
            return [
                group['initial_lr'] * weight
                for group in self.optimizer.param_groups
            ]
        if self.last_epoch not in self.milestones:
            return [group['lr'] for group in self.optimizer.param_groups]
        return [
            group['lr'] * self.gamma**self.milestones[self.last_epoch]
            for group in self.optimizer.param_groups
        ]

class LinearLR(_LRScheduler):
    """

    Args:
        optimizer (torch.nn.optimizer): Torch optimizer.
        milestones (list): Iterations that will decrease learning rate.
        gamma (float): Decrease ratio. Default: 0.1.
        last_epoch (int): Used in _LRScheduler. Default: -1.
    """

    def __init__(self,
                 optimizer,
                 total_iter,
                 last_epoch=-1):
        self.total_iter = total_iter
        super(LinearLR, self).__init__(optimizer, last_epoch)

    def get_lr(self):
        process = self.last_epoch / self.total_iter
        weight = (1 - process)
        # print('get lr ', [weight * group['initial_lr'] for group in self.optimizer.param_groups])
        return [weight * group['initial_lr'] for group in self.optimizer.param_groups]

class VibrateLR(_LRScheduler):
    """

    Args:
        optimizer (torch.nn.optimizer): Torch optimizer.
        milestones (list): Iterations that will decrease learning rate.
        gamma (float): Decrease ratio. Default: 0.1.
        last_epoch (int): Used in _LRScheduler. Default: -1.
    """

    def __init__(self,
                 optimizer,
                 total_iter,
                 last_epoch=-1):
        self.total_iter = total_iter
        super(VibrateLR, self).__init__(optimizer, last_epoch)

    def get_lr(self):
        process = self.last_epoch / self.total_iter

        f = 0.1
        if process < 3 / 8:
            f = 1 - process * 8 / 3
        elif process < 5 / 8:
            f = 0.2

        T = self.total_iter // 80
        Th = T // 2

        t = self.last_epoch % T

        f2 = t / Th
        if t >= Th:
            f2 = 2 - f2

        weight = f * f2

        if self.last_epoch < Th:
            weight = max(0.1, weight)

        # print('f {}, T {}, Th {}, t {}, f2 {}'.format(f, T, Th, t, f2))
        return [weight * group['initial_lr'] for group in self.optimizer.param_groups]

def get_position_from_periods(iteration, cumulative_period):
    """Get the position from a period list.

    It will return the index of the right-closest number in the period list.
    For example, the cumulative_period = [100, 200, 300, 400],
    if iteration == 50, return 0;
    if iteration == 210, return 2;
    if iteration == 300, return 2.

    Args:
        iteration (int): Current iteration.
        cumulative_period (list[int]): Cumulative period list.

    Returns:
        int: The position of the right-closest number in the period list.
    """
    for i, period in enumerate(cumulative_period):
        if iteration <= period:
            return i


class CosineAnnealingRestartLR(_LRScheduler):
    """ Cosine annealing with restarts learning rate scheme.

    An example of config:
    periods = [10, 10, 10, 10]
    restart_weights = [1, 0.5, 0.5, 0.5]
    eta_min=1e-7

    It has four cycles, each has 10 iterations. At 10th, 20th, 30th, the
    scheduler will restart with the weights in restart_weights.

    Args:
        optimizer (torch.nn.optimizer): Torch optimizer.
        periods (list): Period for each cosine anneling cycle.
        restart_weights (list): Restart weights at each restart iteration.
            Default: [1].
        eta_min (float): The mimimum lr. Default: 0.
        last_epoch (int): Used in _LRScheduler. Default: -1.
    """

    def __init__(self,
                 optimizer,
                 periods,
                 restart_weights=(1, ),
                 eta_min=0,
                 last_epoch=-1):
        self.periods = periods
        self.restart_weights = restart_weights
        self.eta_min = eta_min
        assert (len(self.periods) == len(self.restart_weights)
                ), 'periods and restart_weights should have the same length.'
        self.cumulative_period = [
            sum(self.periods[0:i + 1]) for i in range(0, len(self.periods))
        ]
        super(CosineAnnealingRestartLR, self).__init__(optimizer, last_epoch)

    def get_lr(self):
        idx = get_position_from_periods(self.last_epoch,
                                        self.cumulative_period)
        current_weight = self.restart_weights[idx]
        nearest_restart = 0 if idx == 0 else self.cumulative_period[idx - 1]
        current_period = self.periods[idx]

        return [
            self.eta_min + current_weight * 0.5 * (base_lr - self.eta_min) *
            (1 + math.cos(math.pi * (
                (self.last_epoch - nearest_restart) / current_period)))
            for base_lr in self.base_lrs
        ]

class CosineAnnealingRestartCyclicLR(_LRScheduler):
    """ Cosine annealing with restarts learning rate scheme.
    An example of config:
    periods = [10, 10, 10, 10]
    restart_weights = [1, 0.5, 0.5, 0.5]
    eta_min=1e-7
    It has four cycles, each has 10 iterations. At 10th, 20th, 30th, the
    scheduler will restart with the weights in restart_weights.
    Args:
        optimizer (torch.nn.optimizer): Torch optimizer.
        periods (list): Period for each cosine anneling cycle.
        restart_weights (list): Restart weights at each restart iteration.
            Default: [1].
        eta_min (float): The mimimum lr. Default: 0.
        last_epoch (int): Used in _LRScheduler. Default: -1.
    """

    def __init__(self,
                 optimizer,
                 periods,
                 restart_weights=(1, ),
                 eta_mins=(0, ),
                 last_epoch=-1):
        self.periods = periods
        self.restart_weights = restart_weights
        self.eta_mins = eta_mins
        assert (len(self.periods) == len(self.restart_weights)
                ), 'periods and restart_weights should have the same length.'
        self.cumulative_period = [
            sum(self.periods[0:i + 1]) for i in range(0, len(self.periods))
        ]
        super(CosineAnnealingRestartCyclicLR, self).__init__(optimizer, last_epoch)
        
    def get_lr(self):
        idx = get_position_from_periods(self.last_epoch,
                                        self.cumulative_period)
        current_weight = self.restart_weights[idx]
        nearest_restart = 0 if idx == 0 else self.cumulative_period[idx - 1]
        current_period = self.periods[idx]
        eta_min = self.eta_mins[idx]

        return [
            eta_min + current_weight * 0.5 * (base_lr - eta_min) *
            (1 + math.cos(math.pi * (
                (self.last_epoch - nearest_restart) / current_period)))
            for base_lr in self.base_lrs
        ]