Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
import numpy as np | |
import torch.nn.functional as F | |
from skimage import img_as_ubyte | |
from Allweather.util import load_img, save_img | |
from basicsr.models.archs.histoformer_arch import Histoformer | |
model_restoration = Histoformer.from_pretrained("sunsean/Histoformer-real").to("cuda") | |
model_restoration.eval() | |
factor = 8 | |
def predict(input_img): | |
img = np.float32(load_img(input_img))/255. | |
img = torch.from_numpy(img).permute(2,0,1) | |
input_ = img.unsqueeze(0).cuda() | |
# Padding in case images are not multiples of 8 | |
h,w = input_.shape[2], input_.shape[3] | |
H,W = ((h+factor)//factor)*factor, ((w+factor)//factor)*factor | |
padh = H-h if h%factor!=0 else 0 | |
padw = W-w if w%factor!=0 else 0 | |
input_ = F.pad(input_, (0,padw,0,padh), 'reflect') | |
restored = model_restoration(input_) | |
output_path = "restored.png" | |
restored = restored[:,:,:h,:w] | |
restored = torch.clamp(restored,0,1).cpu().detach().permute(0, 2, 3, 1).squeeze(0).numpy() | |
save_img(output_path, img_as_ubyte(restored)) | |
example_images = [ | |
"examples/example.jpeg", | |
] | |
gradio_app = gr.Interface( | |
predict, | |
inputs=gr.Image(label="Upload images with adverse weather degradations", type="filepath"), | |
outputs=[ | |
gr.Image(type="filepath", label="Inverse Depth Map", height=768, width=768), | |
gr.Textbox(label="Focal Length or Error Message") | |
], | |
title="Image Restoration for All-in-one Adverse Weather", | |
description="[Histoformer](https://huggingface.co/sunsean/Histoformer/) is a image restoration model for all-in-one adverse weather.", | |
examples=example_images | |
) | |
if __name__ == "__main__": | |
gradio_app.launch() |