Histoformer / app.py
sunshangquan
commit from ssq
14e98b6
raw
history blame
1.69 kB
import torch
import gradio as gr
import numpy as np
import torch.nn.functional as F
from skimage import img_as_ubyte
from Allweather.util import load_img, save_img
from basicsr.models.archs.histoformer_arch import Histoformer
model_restoration = Histoformer.from_pretrained("sunsean/Histoformer-real").to("cuda")
model_restoration.eval()
factor = 8
def predict(input_img):
img = np.float32(load_img(input_img))/255.
img = torch.from_numpy(img).permute(2,0,1)
input_ = img.unsqueeze(0).cuda()
# Padding in case images are not multiples of 8
h,w = input_.shape[2], input_.shape[3]
H,W = ((h+factor)//factor)*factor, ((w+factor)//factor)*factor
padh = H-h if h%factor!=0 else 0
padw = W-w if w%factor!=0 else 0
input_ = F.pad(input_, (0,padw,0,padh), 'reflect')
restored = model_restoration(input_)
output_path = "restored.png"
restored = restored[:,:,:h,:w]
restored = torch.clamp(restored,0,1).cpu().detach().permute(0, 2, 3, 1).squeeze(0).numpy()
save_img(output_path, img_as_ubyte(restored))
example_images = [
"examples/example.jpeg",
]
gradio_app = gr.Interface(
predict,
inputs=gr.Image(label="Upload images with adverse weather degradations", type="filepath"),
outputs=[
gr.Image(type="filepath", label="Inverse Depth Map", height=768, width=768),
gr.Textbox(label="Focal Length or Error Message")
],
title="Image Restoration for All-in-one Adverse Weather",
description="[Histoformer](https://huggingface.co/sunsean/Histoformer/) is a image restoration model for all-in-one adverse weather.",
examples=example_images
)
if __name__ == "__main__":
gradio_app.launch()