Spaces:
Runtime error
Runtime error
import cv2 | |
import numpy as np | |
from basicsr.metrics.metric_util import reorder_image, to_y_channel | |
import skimage.metrics | |
import torch | |
def calculate_psnr(img1, | |
img2, | |
crop_border, | |
input_order='HWC', | |
test_y_channel=False): | |
"""Calculate PSNR (Peak Signal-to-Noise Ratio). | |
Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio | |
Args: | |
img1 (ndarray/tensor): Images with range [0, 255]/[0, 1]. | |
img2 (ndarray/tensor): Images with range [0, 255]/[0, 1]. | |
crop_border (int): Cropped pixels in each edge of an image. These | |
pixels are not involved in the PSNR calculation. | |
input_order (str): Whether the input order is 'HWC' or 'CHW'. | |
Default: 'HWC'. | |
test_y_channel (bool): Test on Y channel of YCbCr. Default: False. | |
Returns: | |
float: psnr result. | |
""" | |
assert img1.shape == img2.shape, ( | |
f'Image shapes are differnet: {img1.shape}, {img2.shape}.') | |
if input_order not in ['HWC', 'CHW']: | |
raise ValueError( | |
f'Wrong input_order {input_order}. Supported input_orders are ' | |
'"HWC" and "CHW"') | |
if type(img1) == torch.Tensor: | |
if len(img1.shape) == 4: | |
img1 = img1.squeeze(0) | |
img1 = img1.detach().cpu().numpy().transpose(1,2,0) | |
if type(img2) == torch.Tensor: | |
if len(img2.shape) == 4: | |
img2 = img2.squeeze(0) | |
img2 = img2.detach().cpu().numpy().transpose(1,2,0) | |
img1 = reorder_image(img1, input_order=input_order) | |
img2 = reorder_image(img2, input_order=input_order) | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
if crop_border != 0: | |
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] | |
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] | |
if test_y_channel: | |
img1 = to_y_channel(img1) | |
img2 = to_y_channel(img2) | |
mse = np.mean((img1 - img2)**2) | |
if mse == 0: | |
return float('inf') | |
max_value = 1. if img1.max() <= 1 else 255. | |
return 20. * np.log10(max_value / np.sqrt(mse)) | |
def _ssim(img1, img2): | |
"""Calculate SSIM (structural similarity) for one channel images. | |
It is called by func:`calculate_ssim`. | |
Args: | |
img1 (ndarray): Images with range [0, 255] with order 'HWC'. | |
img2 (ndarray): Images with range [0, 255] with order 'HWC'. | |
Returns: | |
float: ssim result. | |
""" | |
C1 = (0.01 * 255)**2 | |
C2 = (0.03 * 255)**2 | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
kernel = cv2.getGaussianKernel(11, 1.5) | |
window = np.outer(kernel, kernel.transpose()) | |
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] | |
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] | |
mu1_sq = mu1**2 | |
mu2_sq = mu2**2 | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq | |
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq | |
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 | |
ssim_map = ((2 * mu1_mu2 + C1) * | |
(2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * | |
(sigma1_sq + sigma2_sq + C2)) | |
return ssim_map.mean() | |
def prepare_for_ssim(img, k): | |
import torch | |
with torch.no_grad(): | |
img = torch.from_numpy(img).unsqueeze(0).unsqueeze(0).float() | |
conv = torch.nn.Conv2d(1, 1, k, stride=1, padding=k//2, padding_mode='reflect') | |
conv.weight.requires_grad = False | |
conv.weight[:, :, :, :] = 1. / (k * k) | |
img = conv(img) | |
img = img.squeeze(0).squeeze(0) | |
img = img[0::k, 0::k] | |
return img.detach().cpu().numpy() | |
def prepare_for_ssim_rgb(img, k): | |
import torch | |
with torch.no_grad(): | |
img = torch.from_numpy(img).float() #HxWx3 | |
conv = torch.nn.Conv2d(1, 1, k, stride=1, padding=k // 2, padding_mode='reflect') | |
conv.weight.requires_grad = False | |
conv.weight[:, :, :, :] = 1. / (k * k) | |
new_img = [] | |
for i in range(3): | |
new_img.append(conv(img[:, :, i].unsqueeze(0).unsqueeze(0)).squeeze(0).squeeze(0)[0::k, 0::k]) | |
return torch.stack(new_img, dim=2).detach().cpu().numpy() | |
def _3d_gaussian_calculator(img, conv3d): | |
out = conv3d(img.unsqueeze(0).unsqueeze(0)).squeeze(0).squeeze(0) | |
return out | |
def _generate_3d_gaussian_kernel(): | |
kernel = cv2.getGaussianKernel(11, 1.5) | |
window = np.outer(kernel, kernel.transpose()) | |
kernel_3 = cv2.getGaussianKernel(11, 1.5) | |
kernel = torch.tensor(np.stack([window * k for k in kernel_3], axis=0)) | |
conv3d = torch.nn.Conv3d(1, 1, (11, 11, 11), stride=1, padding=(5, 5, 5), bias=False, padding_mode='replicate') | |
conv3d.weight.requires_grad = False | |
conv3d.weight[0, 0, :, :, :] = kernel | |
return conv3d | |
def _ssim_3d(img1, img2, max_value): | |
assert len(img1.shape) == 3 and len(img2.shape) == 3 | |
"""Calculate SSIM (structural similarity) for one channel images. | |
It is called by func:`calculate_ssim`. | |
Args: | |
img1 (ndarray): Images with range [0, 255]/[0, 1] with order 'HWC'. | |
img2 (ndarray): Images with range [0, 255]/[0, 1] with order 'HWC'. | |
Returns: | |
float: ssim result. | |
""" | |
C1 = (0.01 * max_value) ** 2 | |
C2 = (0.03 * max_value) ** 2 | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
kernel = _generate_3d_gaussian_kernel().cuda() | |
img1 = torch.tensor(img1).float().cuda() | |
img2 = torch.tensor(img2).float().cuda() | |
mu1 = _3d_gaussian_calculator(img1, kernel) | |
mu2 = _3d_gaussian_calculator(img2, kernel) | |
mu1_sq = mu1 ** 2 | |
mu2_sq = mu2 ** 2 | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = _3d_gaussian_calculator(img1 ** 2, kernel) - mu1_sq | |
sigma2_sq = _3d_gaussian_calculator(img2 ** 2, kernel) - mu2_sq | |
sigma12 = _3d_gaussian_calculator(img1*img2, kernel) - mu1_mu2 | |
ssim_map = ((2 * mu1_mu2 + C1) * | |
(2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * | |
(sigma1_sq + sigma2_sq + C2)) | |
return float(ssim_map.mean()) | |
def _ssim_cly(img1, img2): | |
assert len(img1.shape) == 2 and len(img2.shape) == 2 | |
"""Calculate SSIM (structural similarity) for one channel images. | |
It is called by func:`calculate_ssim`. | |
Args: | |
img1 (ndarray): Images with range [0, 255] with order 'HWC'. | |
img2 (ndarray): Images with range [0, 255] with order 'HWC'. | |
Returns: | |
float: ssim result. | |
""" | |
C1 = (0.01 * 255)**2 | |
C2 = (0.03 * 255)**2 | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
kernel = cv2.getGaussianKernel(11, 1.5) | |
# print(kernel) | |
window = np.outer(kernel, kernel.transpose()) | |
bt = cv2.BORDER_REPLICATE | |
mu1 = cv2.filter2D(img1, -1, window, borderType=bt) | |
mu2 = cv2.filter2D(img2, -1, window,borderType=bt) | |
mu1_sq = mu1**2 | |
mu2_sq = mu2**2 | |
mu1_mu2 = mu1 * mu2 | |
sigma1_sq = cv2.filter2D(img1**2, -1, window, borderType=bt) - mu1_sq | |
sigma2_sq = cv2.filter2D(img2**2, -1, window, borderType=bt) - mu2_sq | |
sigma12 = cv2.filter2D(img1 * img2, -1, window, borderType=bt) - mu1_mu2 | |
ssim_map = ((2 * mu1_mu2 + C1) * | |
(2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * | |
(sigma1_sq + sigma2_sq + C2)) | |
return ssim_map.mean() | |
def calculate_ssim(img1, | |
img2, | |
crop_border, | |
input_order='HWC', | |
test_y_channel=False): | |
"""Calculate SSIM (structural similarity). | |
Ref: | |
Image quality assessment: From error visibility to structural similarity | |
The results are the same as that of the official released MATLAB code in | |
https://ece.uwaterloo.ca/~z70wang/research/ssim/. | |
For three-channel images, SSIM is calculated for each channel and then | |
averaged. | |
Args: | |
img1 (ndarray): Images with range [0, 255]. | |
img2 (ndarray): Images with range [0, 255]. | |
crop_border (int): Cropped pixels in each edge of an image. These | |
pixels are not involved in the SSIM calculation. | |
input_order (str): Whether the input order is 'HWC' or 'CHW'. | |
Default: 'HWC'. | |
test_y_channel (bool): Test on Y channel of YCbCr. Default: False. | |
Returns: | |
float: ssim result. | |
""" | |
assert img1.shape == img2.shape, ( | |
f'Image shapes are differnet: {img1.shape}, {img2.shape}.') | |
if input_order not in ['HWC', 'CHW']: | |
raise ValueError( | |
f'Wrong input_order {input_order}. Supported input_orders are ' | |
'"HWC" and "CHW"') | |
if type(img1) == torch.Tensor: | |
if len(img1.shape) == 4: | |
img1 = img1.squeeze(0) | |
img1 = img1.detach().cpu().numpy().transpose(1,2,0) | |
if type(img2) == torch.Tensor: | |
if len(img2.shape) == 4: | |
img2 = img2.squeeze(0) | |
img2 = img2.detach().cpu().numpy().transpose(1,2,0) | |
img1 = reorder_image(img1, input_order=input_order) | |
img2 = reorder_image(img2, input_order=input_order) | |
img1 = img1.astype(np.float64) | |
img2 = img2.astype(np.float64) | |
if crop_border != 0: | |
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] | |
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] | |
if test_y_channel: | |
img1 = to_y_channel(img1) | |
img2 = to_y_channel(img2) | |
return _ssim_cly(img1[..., 0], img2[..., 0]) | |
ssims = [] | |
# ssims_before = [] | |
# skimage_before = skimage.metrics.structural_similarity(img1, img2, data_range=255., multichannel=True) | |
# print('.._skimage', | |
# skimage.metrics.structural_similarity(img1, img2, data_range=255., multichannel=True)) | |
max_value = 1 if img1.max() <= 1 else 255 | |
with torch.no_grad(): | |
final_ssim = _ssim_3d(img1, img2, max_value) | |
ssims.append(final_ssim) | |
# for i in range(img1.shape[2]): | |
# ssims_before.append(_ssim(img1, img2)) | |
# print('..ssim mean , new {:.4f} and before {:.4f} .... skimage before {:.4f}'.format(np.array(ssims).mean(), np.array(ssims_before).mean(), skimage_before)) | |
# ssims.append(skimage.metrics.structural_similarity(img1[..., i], img2[..., i], multichannel=False)) | |
return np.array(ssims).mean() | |