Spaces:
Runtime error
Runtime error
import numpy as np | |
import os | |
import argparse | |
from tqdm import tqdm | |
import torch.nn as nn | |
import torch | |
import torch.nn.functional as F | |
import util | |
from natsort import natsorted | |
from glob import glob | |
import sys | |
sys.path.append(os.path.join(os.getcwd(), "..")) | |
from basicsr.models.archs.histoformer_arch import Histoformer | |
from skimage import img_as_ubyte | |
from pdb import set_trace as stx | |
import time | |
parser = argparse.ArgumentParser(description='Image Deraining using Restormer') | |
parser.add_argument('--input_dir', default='./Datasets/', type=str, help='Directory of validation images') | |
parser.add_argument('--result_dir', default='./results/', type=str, help='Directory for results') | |
parser.add_argument('--weights', default='./pretrained_models/deraining.pth', type=str, help='Path to weights') | |
parser.add_argument('--yaml_file', default='Options/Allweather_Histoformer.yml', type=str, help='Path to weights') | |
args = parser.parse_args() | |
####### Load yaml ####### | |
yaml_file = args.yaml_file | |
import yaml | |
try: | |
from yaml import CLoader as Loader | |
except ImportError: | |
from yaml import Loader | |
x = yaml.load(open(yaml_file, mode='r'), Loader=Loader) | |
s = x['network_g'].pop('type') | |
########################## | |
model_restoration = Histoformer(**x['network_g']) | |
checkpoint = torch.load(args.weights) | |
''' | |
from thop import profile | |
flops, params = profile(model_restoration, inputs=(torch.randn(1, 3, 256,256), )) | |
print('FLOPs = ' + str(flops/1000**3) + 'G') | |
print('Params = ' + str(params/1000**2) + 'M') | |
''' | |
model_restoration.load_state_dict(checkpoint['params']) | |
print("===>Testing using weights: ",args.weights) | |
model_restoration.cuda() | |
model_restoration = nn.DataParallel(model_restoration) | |
model_restoration.eval() | |
factor = 8 | |
result_dir = os.path.join(args.result_dir) | |
os.makedirs(result_dir, exist_ok=True) | |
inp_dir = os.path.join(args.input_dir) | |
files = natsorted(glob(os.path.join(inp_dir, '*.png')) + glob(os.path.join(inp_dir, '*.jpg'))) | |
with torch.no_grad(): | |
for file_ in tqdm(files): | |
torch.cuda.ipc_collect() | |
torch.cuda.empty_cache() | |
img = np.float32(util.load_img(file_))/255. | |
img = torch.from_numpy(img).permute(2,0,1) | |
input_ = img.unsqueeze(0).cuda() | |
# Padding in case images are not multiples of 8 | |
h,w = input_.shape[2], input_.shape[3] | |
H,W = ((h+factor)//factor)*factor, ((w+factor)//factor)*factor | |
padh = H-h if h%factor!=0 else 0 | |
padw = W-w if w%factor!=0 else 0 | |
input_ = F.pad(input_, (0,padw,0,padh), 'reflect') | |
time1 = time.time() | |
restored = model_restoration(input_) | |
time2 = time.time() | |
#print(time2-time1) | |
# Unpad images to original dimensions | |
restored = restored[:,:,:h,:w] | |
restored = torch.clamp(restored,0,1).cpu().detach().permute(0, 2, 3, 1).squeeze(0).numpy() | |
util.save_img((os.path.join(result_dir, os.path.splitext(os.path.split(file_)[-1])[0]+'.png')), img_as_ubyte(restored)) | |