Spaces:
Runtime error
Runtime error
import importlib | |
import torch | |
from collections import OrderedDict | |
from copy import deepcopy | |
from os import path as osp | |
from tqdm import tqdm | |
from basicsr.models.archs import define_network | |
from basicsr.models.base_model import BaseModel | |
from basicsr.utils import get_root_logger, imwrite, tensor2img | |
from huggingface_hub import PyTorchModelHubMixin | |
loss_module = importlib.import_module('basicsr.models.losses') | |
metric_module = importlib.import_module('basicsr.metrics') | |
import os | |
import random | |
import numpy as np | |
import cv2 | |
import torch.nn.functional as F | |
from functools import partial | |
#from audtorch.metrics.functional import pearsonr | |
import torch.autograd as autograd | |
class Mixing_Augment: | |
def __init__(self, mixup_beta, use_identity, device): | |
self.dist = torch.distributions.beta.Beta(torch.tensor([mixup_beta]), torch.tensor([mixup_beta])) | |
self.device = device | |
self.use_identity = use_identity | |
self.augments = [self.mixup] | |
def mixup(self, target, input_): | |
lam = self.dist.rsample((1,1)).item() | |
r_index = torch.randperm(target.size(0)).to(self.device) | |
target = lam * target + (1-lam) * target[r_index, :] | |
input_ = lam * input_ + (1-lam) * input_[r_index, :] | |
return target, input_ | |
def __call__(self, target, input_): | |
if self.use_identity: | |
augment = random.randint(0, len(self.augments)) | |
if augment < len(self.augments): | |
target, input_ = self.augments[augment](target, input_) | |
else: | |
augment = random.randint(0, len(self.augments)-1) | |
target, input_ = self.augments[augment](target, input_) | |
return target, input_ | |
class ImageCleanModel(BaseModel): | |
"""Base Deblur model for single image deblur.""" | |
def __init__(self, opt): | |
super(ImageCleanModel, self).__init__(opt) | |
# define network | |
self.mixing_flag = self.opt['train']['mixing_augs'].get('mixup', False) | |
if self.mixing_flag: | |
mixup_beta = self.opt['train']['mixing_augs'].get('mixup_beta', 1.2) | |
use_identity = self.opt['train']['mixing_augs'].get('use_identity', False) | |
self.mixing_augmentation = Mixing_Augment(mixup_beta, use_identity, self.device) | |
self.net_g = define_network(deepcopy(opt['network_g'])) | |
self.net_g = self.model_to_device(self.net_g) | |
self.print_network(self.net_g) | |
# load pretrained models | |
load_path = self.opt['path'].get('pretrain_network_g', None) | |
if load_path is not None: | |
self.load_network(self.net_g, load_path, | |
self.opt['path'].get('strict_load_g', True), param_key=self.opt['path'].get('param_key', 'params')) | |
if self.is_train: | |
self.init_training_settings() | |
self.psnr_best = -1 | |
def init_training_settings(self): | |
self.net_g.train() | |
train_opt = self.opt['train'] | |
self.ema_decay = train_opt.get('ema_decay', 0) | |
if self.ema_decay > 0: | |
logger = get_root_logger() | |
logger.info( | |
f'Use Exponential Moving Average with decay: {self.ema_decay}') | |
# define network net_g with Exponential Moving Average (EMA) | |
# net_g_ema is used only for testing on one GPU and saving | |
# There is no need to wrap with DistributedDataParallel | |
self.net_g_ema = define_network(self.opt['network_g']).to( | |
self.device) | |
# load pretrained model | |
load_path = self.opt['path'].get('pretrain_network_g', None) | |
if load_path is not None: | |
self.load_network(self.net_g_ema, load_path, | |
self.opt['path'].get('strict_load_g', | |
True), 'params_ema') | |
else: | |
self.model_ema(0) # copy net_g weight | |
self.net_g_ema.eval() | |
# define losses | |
if train_opt.get('pixel_opt'): | |
pixel_type = train_opt['pixel_opt'].pop('type') | |
cri_pix_cls = getattr(loss_module, pixel_type) | |
self.cri_pix = cri_pix_cls(**train_opt['pixel_opt']).to( | |
self.device) | |
else: | |
raise ValueError('pixel loss are None.') | |
if train_opt.get('seq_opt'): | |
# from audtorch.metrics.functional import pearsonr | |
# self.cri_seq = pearsonr | |
self.cri_seq = self.pearson_correlation_loss # | |
self.cri_celoss = torch.nn.CrossEntropyLoss() | |
# set up optimizers and schedulers | |
self.setup_optimizers() | |
self.setup_schedulers() | |
def pearson_correlation_loss(self, x1, x2): | |
assert x1.shape == x2.shape | |
b, c = x1.shape[:2] | |
dim = -1 | |
x1, x2 = x1.reshape(b, -1), x2.reshape(b, -1) | |
x1_mean, x2_mean = x1.mean(dim=dim, keepdims=True), x2.mean(dim=dim, keepdims=True) | |
numerator = ((x1 - x1_mean) * (x2 - x2_mean)).sum( dim=dim, keepdims=True ) | |
std1 = (x1 - x1_mean).pow(2).sum(dim=dim, keepdims=True).sqrt() | |
std2 = (x2 - x2_mean).pow(2).sum(dim=dim, keepdims=True).sqrt() | |
denominator = std1 * std2 | |
corr = numerator.div(denominator + 1e-6) | |
return corr | |
def setup_optimizers(self): | |
train_opt = self.opt['train'] | |
optim_params = [] | |
for k, v in self.net_g.named_parameters(): | |
if v.requires_grad: | |
optim_params.append(v) | |
else: | |
logger = get_root_logger() | |
logger.warning(f'Params {k} will not be optimized.') | |
optim_type = train_opt['optim_g'].pop('type') | |
if optim_type == 'Adam': | |
self.optimizer_g = torch.optim.Adam(optim_params, **train_opt['optim_g']) | |
elif optim_type == 'AdamW': | |
self.optimizer_g = torch.optim.AdamW(optim_params, **train_opt['optim_g']) | |
else: | |
raise NotImplementedError( | |
f'optimizer {optim_type} is not supperted yet.') | |
self.optimizers.append(self.optimizer_g) | |
def feed_train_data(self, data): | |
self.lq = data['lq'].to(self.device) | |
if 'gt' in data: | |
self.gt = data['gt'].to(self.device) | |
if 'label' in data: | |
self.label = data['label'] | |
# self.label = torch.nn.functional.one_hot(data['label'], num_classes=3) | |
if self.mixing_flag: | |
self.gt, self.lq = self.mixing_augmentation(self.gt, self.lq) | |
def feed_data(self, data): | |
self.lq = data['lq'].to(self.device) | |
if 'gt' in data: | |
self.gt = data['gt'].to(self.device) | |
def check_inf_nan(self, x): | |
x[x.isnan()] = 0 | |
x[x.isinf()] = 1e7 | |
return x | |
def compute_correlation_loss(self, x1, x2): | |
b, c = x1.shape[0:2] | |
x1 = x1.view(b, -1) | |
x2 = x2.view(b, -1) | |
# print(x1, x2) | |
pearson = (1. - self.cri_seq(x1, x2)) / 2. | |
return pearson[~pearson.isnan()*~pearson.isinf()].mean() | |
def optimize_parameters(self, current_iter): | |
self.optimizer_g.zero_grad() | |
self.output = self.net_g(self.lq, ) | |
loss_dict = OrderedDict() | |
# pixel loss | |
l_pix = self.cri_pix(self.output, self.gt) | |
loss_dict['l_pix'] = l_pix | |
''' | |
l_mask = self.cri_pix(self.pred_mask, self.gt - self.output.detach()) | |
loss_dict['l_mask'] = l_mask | |
''' | |
l_pear = self.compute_correlation_loss(self.output, self.gt) | |
loss_dict['l_pear'] = l_pear | |
# l_pred = self.cri_celoss(self.pred, self.label.to(self.pred.device)) | |
# loss_dict['l_pred'] = l_pred | |
# print("pear:", l_pear, "pix:", l_pix) | |
loss_total = l_pix + l_pear #+ 0.01*l_pred#+ l_mask | |
loss_total.backward() | |
if self.opt['train']['use_grad_clip']: | |
torch.nn.utils.clip_grad_norm_(self.net_g.parameters(), 0.01, error_if_nonfinite=False) | |
self.optimizer_g.step() | |
self.log_dict, self.loss_total = self.reduce_loss_dict(loss_dict) | |
self.loss_dict = loss_dict | |
if self.ema_decay > 0: | |
self.model_ema(decay=self.ema_decay) | |
def pad_test(self, window_size): | |
scale = self.opt.get('scale', 1) | |
mod_pad_h, mod_pad_w = 0, 0 | |
_, _, h, w = self.lq.size() | |
if h % window_size != 0: | |
mod_pad_h = window_size - h % window_size | |
if w % window_size != 0: | |
mod_pad_w = window_size - w % window_size | |
img = F.pad(self.lq, (0, mod_pad_w, 0, mod_pad_h), 'reflect') | |
self.nonpad_test(img) | |
_, _, h, w = self.output.size() | |
self.output = self.output[:, :, 0:h - mod_pad_h * scale, 0:w - mod_pad_w * scale] | |
def nonpad_test(self, img=None): | |
if img is None: | |
img = self.lq | |
if hasattr(self, 'net_g_ema'): | |
self.net_g_ema.eval() | |
with torch.no_grad(): | |
pred = self.net_g_ema(img) | |
if isinstance(pred, list): | |
pred = pred[-1] | |
self.output = pred | |
else: | |
self.net_g.eval() | |
with torch.no_grad(): | |
pred = self.net_g(img) | |
if isinstance(pred, list): | |
pred = pred[-1] | |
self.output = pred | |
self.net_g.train() | |
def dist_validation(self, dataloader, current_iter, tb_logger, save_img, rgb2bgr, use_image): | |
if os.environ['LOCAL_RANK'] == '0': | |
return self.nondist_validation(dataloader, current_iter, tb_logger, save_img, rgb2bgr, use_image) | |
else: | |
return 0. | |
def nondist_validation(self, dataloader, current_iter, tb_logger, | |
save_img, rgb2bgr, use_image): | |
dataset_name = dataloader.dataset.opt['name'] | |
with_metrics = self.opt['val'].get('metrics') is not None | |
if with_metrics: | |
self.metric_results = { | |
metric: 0 | |
for metric in self.opt['val']['metrics'].keys() | |
} | |
# pbar = tqdm(total=len(dataloader), unit='image') | |
window_size = self.opt['val'].get('window_size', 0) | |
if window_size: | |
test = partial(self.pad_test, window_size) | |
else: | |
test = self.nonpad_test | |
cnt = 0 | |
for idx, val_data in enumerate(dataloader): | |
if idx >= 60: | |
break | |
img_name = osp.splitext(osp.basename(val_data['lq_path'][0]))[0] | |
self.feed_data(val_data) | |
test() | |
visuals = self.get_current_visuals() | |
sr_img = tensor2img([visuals['result']], rgb2bgr=rgb2bgr) | |
if 'gt' in visuals: | |
gt_img = tensor2img([visuals['gt']], rgb2bgr=rgb2bgr) | |
del self.gt | |
# tentative for out of GPU memory | |
del self.lq | |
del self.output | |
torch.cuda.empty_cache() | |
if save_img: | |
if self.opt['is_train']: | |
save_img_path = osp.join(self.opt['path']['visualization'], | |
img_name, | |
f'{img_name}_{current_iter}.png') | |
save_gt_img_path = osp.join(self.opt['path']['visualization'], | |
img_name, | |
f'{img_name}_{current_iter}_gt.png') | |
else: | |
save_img_path = osp.join( | |
self.opt['path']['visualization'], dataset_name, | |
f'{img_name}.png') | |
save_gt_img_path = osp.join( | |
self.opt['path']['visualization'], dataset_name, | |
f'{img_name}_gt.png') | |
imwrite(sr_img, save_img_path) | |
imwrite(gt_img, save_gt_img_path) | |
if with_metrics: | |
# calculate metrics | |
opt_metric = deepcopy(self.opt['val']['metrics']) | |
if use_image: | |
for name, opt_ in opt_metric.items(): | |
metric_type = opt_.pop('type') | |
self.metric_results[name] += getattr( | |
metric_module, metric_type)(sr_img, gt_img, **opt_) | |
else: | |
for name, opt_ in opt_metric.items(): | |
metric_type = opt_.pop('type') | |
self.metric_results[name] += getattr( | |
metric_module, metric_type)(visuals['result'], visuals['gt'], **opt_) | |
cnt += 1 | |
current_metric = 0. | |
if with_metrics: | |
for metric in self.metric_results.keys(): | |
self.metric_results[metric] /= cnt | |
current_metric = max(current_metric, self.metric_results[metric]) | |
self._log_validation_metric_values(current_iter, dataset_name, | |
tb_logger) | |
return current_metric | |
def _log_validation_metric_values(self, current_iter, dataset_name, | |
tb_logger): | |
log_str = f'Validation {dataset_name},\t' | |
for metric, value in self.metric_results.items(): | |
log_str += f'\t # {metric}: {value:.4f}' | |
if metric == 'psnr' and value >= self.psnr_best: | |
self.save(0, current_iter, best=True) | |
self.psnr_best = value | |
logger = get_root_logger() | |
logger.info(log_str) | |
if tb_logger: | |
for metric, value in self.metric_results.items(): | |
tb_logger.add_scalar(f'metrics/{metric}', value, current_iter) | |
def get_current_visuals(self): | |
out_dict = OrderedDict() | |
out_dict['lq'] = self.lq.detach().cpu() | |
out_dict['result'] = self.output.detach().cpu() | |
if hasattr(self, 'gt'): | |
out_dict['gt'] = self.gt.detach().cpu() | |
return out_dict | |
def save(self, epoch, current_iter, best=False): | |
if self.ema_decay > 0: | |
self.save_network([self.net_g, self.net_g_ema], | |
'net_g', | |
current_iter, | |
param_key=['params', 'params_ema'], best=best) | |
else: | |
self.save_network(self.net_g, 'net_g', current_iter, best=best) | |
self.save_training_state(epoch, current_iter, best=best) | |