Spaces:
Runtime error
Runtime error
import argparse | |
import datetime | |
import logging | |
import math | |
import random | |
import time | |
import torch | |
from os import path as osp | |
import os, sys | |
sys.path.append(osp.join(os.getcwd())) | |
from data import create_dataloader, create_dataset | |
from data.data_sampler import EnlargedSampler | |
from data.prefetch_dataloader import CPUPrefetcher, CUDAPrefetcher | |
from models import create_model | |
from utils import (MessageLogger, check_resume, get_env_info, | |
get_root_logger, get_time_str, init_tb_logger, | |
init_wandb_logger, make_exp_dirs, mkdir_and_rename, | |
set_random_seed) | |
from utils.dist_util import get_dist_info, init_dist | |
from utils.options import dict2str, parse | |
from tensorboardX import SummaryWriter | |
import numpy as np | |
def parse_options(is_train=True): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
'-opt', type=str, required=True, help='Path to option YAML file.') | |
parser.add_argument( | |
'--launcher', | |
choices=['none', 'pytorch', 'slurm'], | |
default='none', | |
help='job launcher') | |
parser.add_argument('--local_rank', type=int, default=0) | |
args = parser.parse_args() | |
opt = parse(args.opt, is_train=is_train) | |
# distributed settings | |
if args.launcher == 'none': | |
opt['dist'] = False | |
print('Disable distributed.', flush=True) | |
else: | |
opt['dist'] = True | |
if args.launcher == 'slurm' and 'dist_params' in opt: | |
init_dist(args.launcher, **opt['dist_params']) | |
else: | |
init_dist(args.launcher) | |
print('init dist .. ', args.launcher) | |
opt['rank'], opt['world_size'] = get_dist_info() | |
# random seed | |
seed = opt.get('manual_seed') | |
if seed is None: | |
seed = random.randint(1, 10000) | |
opt['manual_seed'] = seed | |
set_random_seed(seed + opt['rank']) | |
return opt | |
def init_loggers(opt): | |
log_file = osp.join(opt['path']['log'], | |
f"train_{opt['name']}_{get_time_str()}.log") | |
logger = get_root_logger( | |
logger_name='basicsr', log_level=logging.INFO, log_file=log_file) | |
logger.info(get_env_info()) | |
logger.info(dict2str(opt)) | |
# initialize wandb logger before tensorboard logger to allow proper sync: | |
if (opt['logger'].get('wandb') | |
is not None) and (opt['logger']['wandb'].get('project') | |
is not None) and ('debug' not in opt['name']): | |
assert opt['logger'].get('use_tb_logger') is True, ( | |
'should turn on tensorboard when using wandb') | |
init_wandb_logger(opt) | |
tb_logger = None | |
if opt['logger'].get('use_tb_logger') and 'debug' not in opt['name']: | |
tb_logger = init_tb_logger(log_dir=osp.join('tb_logger', opt['name'])) | |
return logger, tb_logger | |
def create_train_val_dataloader(opt, logger): | |
# create train and val dataloaders | |
train_loader, val_loader, val_loaders = None, None, {} | |
for phase, dataset_opt in opt['datasets'].items(): | |
if phase == 'train': | |
dataset_enlarge_ratio = dataset_opt.get('dataset_enlarge_ratio', 1) | |
train_set = create_dataset(dataset_opt) | |
train_sampler = EnlargedSampler(train_set, opt['world_size'], | |
opt['rank'], dataset_enlarge_ratio) | |
train_loader = create_dataloader( | |
train_set, | |
dataset_opt, | |
num_gpu=opt['num_gpu'], | |
dist=opt['dist'], | |
sampler=train_sampler, | |
seed=opt['manual_seed']) | |
num_iter_per_epoch = math.ceil( | |
len(train_set) * dataset_enlarge_ratio / | |
(dataset_opt['batch_size_per_gpu'] * opt['world_size'])) | |
print(len(train_set)) | |
total_iters = int(opt['train']['total_iter']) | |
total_epochs = math.ceil(total_iters / (num_iter_per_epoch)) | |
logger.info( | |
'Training statistics:' | |
f'\n\tNumber of train images: {len(train_set)}' | |
f'\n\tDataset enlarge ratio: {dataset_enlarge_ratio}' | |
f'\n\tBatch size per gpu: {dataset_opt["batch_size_per_gpu"]}' | |
f'\n\tWorld size (gpu number): {opt["world_size"]}' | |
f'\n\tRequire iter number per epoch: {num_iter_per_epoch}' | |
f'\n\tTotal epochs: {total_epochs}; iters: {total_iters}.') | |
elif phase == 'val_snow_s': | |
val_set = create_dataset(dataset_opt) | |
val_loader = create_dataloader( | |
val_set, | |
dataset_opt, | |
num_gpu=opt['num_gpu'], | |
dist=opt['dist'], | |
sampler=None, | |
seed=opt['manual_seed']) | |
logger.info( | |
f'Number of val images/folders in {dataset_opt["name"]}: ' | |
f'{len(val_set)}') | |
elif phase == 'val_snow_l': | |
val_set = create_dataset(dataset_opt) | |
val_loader = create_dataloader( | |
val_set, | |
dataset_opt, | |
num_gpu=opt['num_gpu'], | |
dist=opt['dist'], | |
sampler=None, | |
seed=opt['manual_seed']) | |
logger.info( | |
f'Number of val images/folders in {dataset_opt["name"]}: ' | |
f'{len(val_set)}') | |
elif phase == 'val_test1': | |
val_set = create_dataset(dataset_opt) | |
val_loader = create_dataloader( | |
val_set, | |
dataset_opt, | |
num_gpu=opt['num_gpu'], | |
dist=opt['dist'], | |
sampler=None, | |
seed=opt['manual_seed']) | |
logger.info( | |
f'Number of val images/folders in {dataset_opt["name"]}: ' | |
f'{len(val_set)}') | |
elif phase == 'val_raindrop': | |
val_set = create_dataset(dataset_opt) | |
val_loader = create_dataloader( | |
val_set, | |
dataset_opt, | |
num_gpu=opt['num_gpu'], | |
dist=opt['dist'], | |
sampler=None, | |
seed=opt['manual_seed']) | |
logger.info( | |
f'Number of val images/folders in {dataset_opt["name"]}: ' | |
f'{len(val_set)}') | |
else: | |
raise ValueError(f'Dataset phase {phase} is not recognized.') | |
if val_loader is not None: | |
val_loaders[dataset_opt["name"]] = val_loader | |
val_loader = None | |
return train_loader, train_sampler, val_loaders, total_epochs, total_iters | |
def main(): | |
# parse options, set distributed setting, set ramdom seed | |
opt = parse_options(is_train=True) | |
torch.backends.cudnn.benchmark = True | |
# torch.backends.cudnn.deterministic = True | |
# automatic resume .. | |
state_folder_path = 'experiments/{}/training_states/'.format(opt['name']) | |
import os | |
try: | |
states = os.listdir(state_folder_path) | |
except: | |
states = [] | |
resume_state = None | |
if len(states) > 0: | |
max_state_file = '{}.state'.format(max([int(x[0:-6]) for x in states])) | |
resume_state = os.path.join(state_folder_path, max_state_file) | |
opt['path']['resume_state'] = resume_state | |
# load resume states if necessary | |
if opt['path'].get('resume_state'): | |
device_id = torch.cuda.current_device() | |
resume_state = torch.load( | |
opt['path']['resume_state'], | |
map_location=lambda storage, loc: storage.cuda(device_id)) | |
else: | |
resume_state = None | |
# mkdir for experiments and logger | |
if resume_state is None: | |
make_exp_dirs(opt) | |
if opt['logger'].get('use_tb_logger') and 'debug' not in opt[ | |
'name'] and opt['rank'] == 0: | |
mkdir_and_rename(osp.join('tb_logger', opt['name'])) | |
# initialize loggers | |
logger, tb_logger = init_loggers(opt) | |
# create train and validation dataloaders | |
result = create_train_val_dataloader(opt, logger) | |
train_loader, train_sampler, val_loaders, total_epochs, total_iters = result | |
# create model | |
if resume_state: # resume training | |
check_resume(opt, resume_state['iter']) | |
model = create_model(opt) | |
model.resume_training(resume_state) # handle optimizers and schedulers | |
logger.info(f"Resuming training from epoch: {resume_state['epoch']}, " | |
f"iter: {resume_state['iter']}.") | |
start_epoch = resume_state['epoch'] | |
current_iter = resume_state['iter'] | |
else: | |
model = create_model(opt) | |
start_epoch = 0 | |
current_iter = 0 | |
# create message logger (formatted outputs) | |
msg_logger = MessageLogger(opt, current_iter, tb_logger) | |
# dataloader prefetcher | |
prefetch_mode = opt['datasets']['train'].get('prefetch_mode') | |
if prefetch_mode is None or prefetch_mode == 'cpu': | |
prefetcher = CPUPrefetcher(train_loader) | |
elif prefetch_mode == 'cuda': | |
prefetcher = CUDAPrefetcher(train_loader, opt) | |
logger.info(f'Use {prefetch_mode} prefetch dataloader') | |
if opt['datasets']['train'].get('pin_memory') is not True: | |
raise ValueError('Please set pin_memory=True for CUDAPrefetcher.') | |
else: | |
raise ValueError(f'Wrong prefetch_mode {prefetch_mode}.' | |
"Supported ones are: None, 'cuda', 'cpu'.") | |
# training | |
logger.info( | |
f'Start training from epoch: {start_epoch}, iter: {current_iter}') | |
data_time, iter_time = time.time(), time.time() | |
start_time = time.time() | |
# for epoch in range(start_epoch, total_epochs + 1): | |
iters = opt['datasets']['train'].get('iters') | |
batch_size = opt['datasets']['train'].get('batch_size_per_gpu') | |
mini_batch_sizes = opt['datasets']['train'].get('mini_batch_sizes') | |
gt_size = opt['datasets']['train'].get('gt_size') | |
mini_gt_sizes = opt['datasets']['train'].get('gt_sizes') | |
groups = np.array([sum(iters[0:i + 1]) for i in range(0, len(iters))]) | |
logger_j = [True] * len(groups) | |
scale = opt['scale'] | |
epoch = start_epoch | |
loss_list = [] | |
loss_writer = SummaryWriter(opt['path']['log']) | |
while current_iter <= total_iters: | |
train_sampler.set_epoch(epoch) | |
prefetcher.reset() | |
train_data = prefetcher.next() | |
while train_data is not None: | |
# logger.info(train_data['lq_path']) | |
data_time = time.time() - data_time | |
current_iter += 1 | |
if current_iter > total_iters: | |
break | |
# if current_iter <= 4600: | |
# continue | |
# update learning rate | |
if opt['train']['scheduler'].get('type') != 'ReduceLROnPlateau': | |
model.update_learning_rate( | |
current_iter, warmup_iter=opt['train'].get('warmup_iter', -1)) | |
else: | |
if len(loss_list) >= 1000: | |
model.update_learning_rate( | |
current_iter, warmup_iter=opt['train'].get('warmup_iter', -1), value_scheduler=np.mean(loss_list)) | |
loss_writer.add_scalar('loss sche_step', np.mean(loss_list), current_iter) | |
loss_list = [] | |
### ------Progressive learning --------------------- | |
j = ((current_iter>groups) !=True).nonzero()[0] | |
if len(j) == 0: | |
bs_j = len(groups) - 1 | |
else: | |
bs_j = j[0] | |
mini_gt_size = mini_gt_sizes[bs_j] | |
mini_batch_size = mini_batch_sizes[bs_j] | |
if logger_j[bs_j]: | |
logger.info('\n Updating Patch_Size to {} and Batch_Size to {} \n'.format(mini_gt_size, mini_batch_size*torch.cuda.device_count())) | |
logger_j[bs_j] = False | |
lq = train_data['lq'] | |
gt = train_data['gt'] | |
label = train_data['label'] | |
if mini_batch_size < batch_size: | |
indices = random.sample(range(0, batch_size), k=mini_batch_size) | |
lq = lq[indices] | |
gt = gt[indices] | |
label = label[indices] | |
if mini_gt_size < gt_size: | |
x0 = int((gt_size - mini_gt_size) * random.random()) | |
y0 = int((gt_size - mini_gt_size) * random.random()) | |
x1 = x0 + mini_gt_size | |
y1 = y0 + mini_gt_size | |
lq = lq[:,:,x0:x1,y0:y1] | |
gt = gt[:,:,x0*scale:x1*scale,y0*scale:y1*scale] | |
###------------------------------------------- | |
model.feed_train_data({'lq': lq, 'gt':gt, "label":label}) | |
model.optimize_parameters(current_iter) | |
for l_name in model.loss_dict: | |
loss_writer.add_scalar('{} loss'.format(l_name), model.loss_dict[l_name], current_iter) | |
loss_list.append(model.loss_total) | |
iter_time = time.time() - iter_time | |
# log | |
if current_iter % opt['logger']['print_freq'] == 0: | |
log_vars = {'epoch': epoch, 'iter': current_iter} | |
log_vars.update({'lrs': model.get_current_learning_rate()}) | |
log_vars.update({'time': iter_time, 'data_time': data_time}) | |
log_vars.update(model.get_current_log()) | |
msg_logger(log_vars) | |
# save models and training states | |
if current_iter % opt['logger']['save_checkpoint_freq'] == 0: | |
logger.info('Saving models and training states.') | |
model.save(epoch, current_iter) | |
# validation | |
if opt.get('val') is not None and (current_iter % | |
opt['val']['val_freq'] == 0): | |
rgb2bgr = opt['val'].get('rgb2bgr', True) | |
# wheather use uint8 image to compute metrics | |
use_image = opt['val'].get('use_image', True) | |
for val_name, val_loader in val_loaders.items(): | |
metric_out = model.validation(val_loader, current_iter, tb_logger, | |
opt['val']['save_img'], rgb2bgr, use_image ) | |
# metric_out = model.metric_results.items()[opt['val']['metrics'].keys()[0]] | |
if metric_out != 0: | |
loss_writer.add_scalar('psnr_'+val_name, metric_out, current_iter) | |
data_time = time.time() | |
iter_time = time.time() | |
train_data = prefetcher.next() | |
# end of iter | |
epoch += 1 | |
# end of epoch | |
consumed_time = str( | |
datetime.timedelta(seconds=int(time.time() - start_time))) | |
logger.info(f'End of training. Time consumed: {consumed_time}') | |
logger.info('Save the latest model.') | |
model.save(epoch=-1, current_iter=-1) # -1 stands for the latest | |
if opt.get('val') is not None: | |
for val_name, val_loader in val_loaders.items(): | |
model.validation(val_loader, current_iter, tb_logger, | |
opt['val']['save_img']) | |
if tb_logger: | |
tb_logger.close() | |
if __name__ == '__main__': | |
main() | |