Spaces:
Runtime error
Runtime error
# Author: Tobias Plötz, TU Darmstadt ([email protected]) | |
# This file is part of the implementation as described in the CVPR 2017 paper: | |
# Tobias Plötz and Stefan Roth, Benchmarking Denoising Algorithms with Real Photographs. | |
# Please see the file LICENSE.txt for the license governing this code. | |
import numpy as np | |
import scipy.io as sio | |
import os | |
import h5py | |
def bundle_submissions_raw(submission_folder,session): | |
''' | |
Bundles submission data for raw denoising | |
submission_folder Folder where denoised images reside | |
Output is written to <submission_folder>/bundled/. Please submit | |
the content of this folder. | |
''' | |
out_folder = os.path.join(submission_folder, session) | |
# out_folder = os.path.join(submission_folder, "bundled/") | |
try: | |
os.mkdir(out_folder) | |
except:pass | |
israw = True | |
eval_version="1.0" | |
for i in range(50): | |
Idenoised = np.zeros((20,), dtype=np.object) | |
for bb in range(20): | |
filename = '%04d_%02d.mat'%(i+1,bb+1) | |
s = sio.loadmat(os.path.join(submission_folder,filename)) | |
Idenoised_crop = s["Idenoised_crop"] | |
Idenoised[bb] = Idenoised_crop | |
filename = '%04d.mat'%(i+1) | |
sio.savemat(os.path.join(out_folder, filename), | |
{"Idenoised": Idenoised, | |
"israw": israw, | |
"eval_version": eval_version}, | |
) | |
def bundle_submissions_srgb(submission_folder,session): | |
''' | |
Bundles submission data for sRGB denoising | |
submission_folder Folder where denoised images reside | |
Output is written to <submission_folder>/bundled/. Please submit | |
the content of this folder. | |
''' | |
out_folder = os.path.join(submission_folder, session) | |
# out_folder = os.path.join(submission_folder, "bundled/") | |
try: | |
os.mkdir(out_folder) | |
except:pass | |
israw = False | |
eval_version="1.0" | |
for i in range(50): | |
Idenoised = np.zeros((20,), dtype=np.object) | |
for bb in range(20): | |
filename = '%04d_%02d.mat'%(i+1,bb+1) | |
s = sio.loadmat(os.path.join(submission_folder,filename)) | |
Idenoised_crop = s["Idenoised_crop"] | |
Idenoised[bb] = Idenoised_crop | |
filename = '%04d.mat'%(i+1) | |
sio.savemat(os.path.join(out_folder, filename), | |
{"Idenoised": Idenoised, | |
"israw": israw, | |
"eval_version": eval_version}, | |
) | |
def bundle_submissions_srgb_v1(submission_folder,session): | |
''' | |
Bundles submission data for sRGB denoising | |
submission_folder Folder where denoised images reside | |
Output is written to <submission_folder>/bundled/. Please submit | |
the content of this folder. | |
''' | |
out_folder = os.path.join(submission_folder, session) | |
# out_folder = os.path.join(submission_folder, "bundled/") | |
try: | |
os.mkdir(out_folder) | |
except:pass | |
israw = False | |
eval_version="1.0" | |
for i in range(50): | |
Idenoised = np.zeros((20,), dtype=np.object) | |
for bb in range(20): | |
filename = '%04d_%d.mat'%(i+1,bb+1) | |
s = sio.loadmat(os.path.join(submission_folder,filename)) | |
Idenoised_crop = s["Idenoised_crop"] | |
Idenoised[bb] = Idenoised_crop | |
filename = '%04d.mat'%(i+1) | |
sio.savemat(os.path.join(out_folder, filename), | |
{"Idenoised": Idenoised, | |
"israw": israw, | |
"eval_version": eval_version}, | |
) |