Histoformer / basicsr /utils /img_util.py
sunshangquan
commit from ssq
f518bf0
import cv2
import math
import numpy as np
import os
import torch
from torchvision.utils import make_grid
def img2tensor(imgs, bgr2rgb=True, float32=True):
"""Numpy array to tensor.
Args:
imgs (list[ndarray] | ndarray): Input images.
bgr2rgb (bool): Whether to change bgr to rgb.
float32 (bool): Whether to change to float32.
Returns:
list[tensor] | tensor: Tensor images. If returned results only have
one element, just return tensor.
"""
def _totensor(img, bgr2rgb, float32):
if img.shape[2] == 3 and bgr2rgb:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = torch.from_numpy(img.transpose(2, 0, 1))
if float32:
img = img.float()
return img
if isinstance(imgs, list):
return [_totensor(img, bgr2rgb, float32) for img in imgs]
else:
return _totensor(imgs, bgr2rgb, float32)
def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
"""Convert torch Tensors into image numpy arrays.
After clamping to [min, max], values will be normalized to [0, 1].
Args:
tensor (Tensor or list[Tensor]): Accept shapes:
1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
2) 3D Tensor of shape (3/1 x H x W);
3) 2D Tensor of shape (H x W).
Tensor channel should be in RGB order.
rgb2bgr (bool): Whether to change rgb to bgr.
out_type (numpy type): output types. If ``np.uint8``, transform outputs
to uint8 type with range [0, 255]; otherwise, float type with
range [0, 1]. Default: ``np.uint8``.
min_max (tuple[int]): min and max values for clamp.
Returns:
(Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
shape (H x W). The channel order is BGR.
"""
if not (torch.is_tensor(tensor) or
(isinstance(tensor, list)
and all(torch.is_tensor(t) for t in tensor))):
raise TypeError(
f'tensor or list of tensors expected, got {type(tensor)}')
if torch.is_tensor(tensor):
tensor = [tensor]
result = []
for _tensor in tensor:
_tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
_tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
n_dim = _tensor.dim()
if n_dim == 4:
img_np = make_grid(
_tensor, nrow=int(math.sqrt(_tensor.size(0))),
normalize=False).numpy()
img_np = img_np.transpose(1, 2, 0)
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 3:
img_np = _tensor.numpy()
img_np = img_np.transpose(1, 2, 0)
if img_np.shape[2] == 1: # gray image
img_np = np.squeeze(img_np, axis=2)
else:
if rgb2bgr:
img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif n_dim == 2:
img_np = _tensor.numpy()
else:
raise TypeError('Only support 4D, 3D or 2D tensor. '
f'But received with dimension: {n_dim}')
if out_type == np.uint8:
# Unlike MATLAB, numpy.unit8() WILL NOT round by default.
img_np = (img_np * 255.0).round()
img_np = img_np.astype(out_type)
result.append(img_np)
if len(result) == 1:
result = result[0]
return result
def imfrombytes(content, flag='color', float32=False):
"""Read an image from bytes.
Args:
content (bytes): Image bytes got from files or other streams.
flag (str): Flags specifying the color type of a loaded image,
candidates are `color`, `grayscale` and `unchanged`.
float32 (bool): Whether to change to float32., If True, will also norm
to [0, 1]. Default: False.
Returns:
ndarray: Loaded image array.
"""
img_np = np.frombuffer(content, np.uint8)
imread_flags = {
'color': cv2.IMREAD_COLOR,
'grayscale': cv2.IMREAD_GRAYSCALE,
'unchanged': cv2.IMREAD_UNCHANGED
}
if img_np is None:
raise Exception('None .. !!!')
img = cv2.imdecode(img_np, imread_flags[flag])
if float32:
img = img.astype(np.float32) / 255.
return img
def imfrombytesDP(content, flag='color', float32=False):
"""Read an image from bytes.
Args:
content (bytes): Image bytes got from files or other streams.
flag (str): Flags specifying the color type of a loaded image,
candidates are `color`, `grayscale` and `unchanged`.
float32 (bool): Whether to change to float32., If True, will also norm
to [0, 1]. Default: False.
Returns:
ndarray: Loaded image array.
"""
img_np = np.frombuffer(content, np.uint8)
if img_np is None:
raise Exception('None .. !!!')
img = cv2.imdecode(img_np, cv2.IMREAD_UNCHANGED)
if float32:
img = img.astype(np.float32) / 65535.
return img
def padding(img_lq, img_gt, gt_size):
h, w, _ = img_lq.shape
h_pad = max(0, gt_size - h)
w_pad = max(0, gt_size - w)
if h_pad == 0 and w_pad == 0:
return img_lq, img_gt
img_lq = cv2.copyMakeBorder(img_lq, 0, h_pad, 0, w_pad, cv2.BORDER_REFLECT)
img_gt = cv2.copyMakeBorder(img_gt, 0, h_pad, 0, w_pad, cv2.BORDER_REFLECT)
# print('img_lq', img_lq.shape, img_gt.shape)
if img_lq.ndim == 2:
img_lq = np.expand_dims(img_lq, axis=2)
if img_gt.ndim == 2:
img_gt = np.expand_dims(img_gt, axis=2)
return img_lq, img_gt
def padding_DP(img_lqL, img_lqR, img_gt, gt_size):
h, w, _ = img_gt.shape
h_pad = max(0, gt_size - h)
w_pad = max(0, gt_size - w)
if h_pad == 0 and w_pad == 0:
return img_lqL, img_lqR, img_gt
img_lqL = cv2.copyMakeBorder(img_lqL, 0, h_pad, 0, w_pad, cv2.BORDER_REFLECT)
img_lqR = cv2.copyMakeBorder(img_lqR, 0, h_pad, 0, w_pad, cv2.BORDER_REFLECT)
img_gt = cv2.copyMakeBorder(img_gt, 0, h_pad, 0, w_pad, cv2.BORDER_REFLECT)
# print('img_lq', img_lq.shape, img_gt.shape)
return img_lqL, img_lqR, img_gt
def imwrite(img, file_path, params=None, auto_mkdir=True):
"""Write image to file.
Args:
img (ndarray): Image array to be written.
file_path (str): Image file path.
params (None or list): Same as opencv's :func:`imwrite` interface.
auto_mkdir (bool): If the parent folder of `file_path` does not exist,
whether to create it automatically.
Returns:
bool: Successful or not.
"""
if auto_mkdir:
dir_name = os.path.abspath(os.path.dirname(file_path))
os.makedirs(dir_name, exist_ok=True)
return cv2.imwrite(file_path, img, params)
def crop_border(imgs, crop_border):
"""Crop borders of images.
Args:
imgs (list[ndarray] | ndarray): Images with shape (h, w, c).
crop_border (int): Crop border for each end of height and weight.
Returns:
list[ndarray]: Cropped images.
"""
if crop_border == 0:
return imgs
else:
if isinstance(imgs, list):
return [
v[crop_border:-crop_border, crop_border:-crop_border, ...]
for v in imgs
]
else:
return imgs[crop_border:-crop_border, crop_border:-crop_border,
...]