File size: 45,935 Bytes
1999a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

import copy
import math
from functools import partial
from typing import Any, Optional, Tuple, Type, Union

import numpy as np
import torch
import torch.nn.functional as F
from torch import Tensor, nn

from ultralytics.nn.modules import MLP, LayerNorm2d, MLPBlock

from .transformer import Attention, TwoWayAttentionBlock, TwoWayTransformer
from .utils import add_decomposed_rel_pos, apply_rotary_enc, compute_axial_cis, window_partition, window_unpartition


class DropPath(nn.Module):
    """
    Implements stochastic depth regularization for neural networks during training.

    Attributes:
        drop_prob (float): Probability of dropping a path during training.
        scale_by_keep (bool): Whether to scale the output by the keep probability.

    Methods:
        forward: Applies stochastic depth to input tensor during training, with optional scaling.

    Examples:
        >>> drop_path = DropPath(drop_prob=0.2, scale_by_keep=True)
        >>> x = torch.randn(32, 64, 224, 224)
        >>> output = drop_path(x)
    """

    def __init__(self, drop_prob=0.0, scale_by_keep=True):
        """Initialize DropPath module for stochastic depth regularization during training."""
        super().__init__()
        self.drop_prob = drop_prob
        self.scale_by_keep = scale_by_keep

    def forward(self, x):
        """Applies stochastic depth to input tensor during training, with optional scaling."""
        if self.drop_prob == 0.0 or not self.training:
            return x
        keep_prob = 1 - self.drop_prob
        shape = (x.shape[0],) + (1,) * (x.ndim - 1)
        random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
        if keep_prob > 0.0 and self.scale_by_keep:
            random_tensor.div_(keep_prob)
        return x * random_tensor


class MaskDownSampler(nn.Module):
    """
    A mask downsampling and embedding module for efficient processing of input masks.

    This class implements a mask downsampler that progressively reduces the spatial dimensions of input masks
    while expanding their channel dimensions using convolutional layers, layer normalization, and activation
    functions.

    Attributes:
        encoder (nn.Sequential): A sequential container of convolutional layers, layer normalization, and
            activation functions for downsampling and embedding masks.

    Methods:
        forward: Downsamples and encodes input mask to embed_dim channels.

    Examples:
        >>> mask_downsampler = MaskDownSampler(embed_dim=256, kernel_size=4, stride=4, padding=0, total_stride=16)
        >>> input_mask = torch.randn(1, 1, 256, 256)
        >>> output = mask_downsampler(input_mask)
        >>> print(output.shape)
        torch.Size([1, 256, 16, 16])
    """

    def __init__(
        self,
        embed_dim=256,
        kernel_size=4,
        stride=4,
        padding=0,
        total_stride=16,
        activation=nn.GELU,
    ):
        """Initializes a mask downsampler module for progressive downsampling and channel expansion."""
        super().__init__()
        num_layers = int(math.log2(total_stride) // math.log2(stride))
        assert stride**num_layers == total_stride
        self.encoder = nn.Sequential()
        mask_in_chans, mask_out_chans = 1, 1
        for _ in range(num_layers):
            mask_out_chans = mask_in_chans * (stride**2)
            self.encoder.append(
                nn.Conv2d(
                    mask_in_chans,
                    mask_out_chans,
                    kernel_size=kernel_size,
                    stride=stride,
                    padding=padding,
                )
            )
            self.encoder.append(LayerNorm2d(mask_out_chans))
            self.encoder.append(activation())
            mask_in_chans = mask_out_chans

        self.encoder.append(nn.Conv2d(mask_out_chans, embed_dim, kernel_size=1))

    def forward(self, x):
        """Downsamples and encodes input mask to embed_dim channels using convolutional layers and LayerNorm2d."""
        return self.encoder(x)


class CXBlock(nn.Module):
    """
    ConvNeXt Block for efficient feature extraction in convolutional neural networks.

    This block implements a modified version of the ConvNeXt architecture, offering improved performance and
    flexibility in feature extraction.

    Attributes:
        dwconv (nn.Conv2d): Depthwise or standard 2D convolution layer.
        norm (LayerNorm2d): Layer normalization applied to channels.
        pwconv1 (nn.Linear): First pointwise convolution implemented as a linear layer.
        act (nn.GELU): GELU activation function.
        pwconv2 (nn.Linear): Second pointwise convolution implemented as a linear layer.
        gamma (nn.Parameter | None): Learnable scale parameter for layer scaling.
        drop_path (nn.Module): DropPath layer for stochastic depth regularization.

    Methods:
        forward: Processes the input tensor through the ConvNeXt block.

    Examples:
        >>> import torch
        >>> x = torch.randn(1, 64, 56, 56)
        >>> block = CXBlock(dim=64, kernel_size=7, padding=3)
        >>> output = block(x)
        >>> print(output.shape)
        torch.Size([1, 64, 56, 56])
    """

    def __init__(
        self,
        dim,
        kernel_size=7,
        padding=3,
        drop_path=0.0,
        layer_scale_init_value=1e-6,
        use_dwconv=True,
    ):
        """
        Initialize a ConvNeXt Block for efficient feature extraction in convolutional neural networks.

        This block implements a modified version of the ConvNeXt architecture, offering improved performance and
        flexibility in feature extraction.

        Args:
            dim (int): Number of input channels.
            kernel_size (int): Size of the convolutional kernel.
            padding (int): Padding size for the convolution.
            drop_path (float): Stochastic depth rate.
            layer_scale_init_value (float): Initial value for Layer Scale.
            use_dwconv (bool): Whether to use depthwise convolution.

        Examples:
            >>> block = CXBlock(dim=64, kernel_size=7, padding=3)
            >>> x = torch.randn(1, 64, 32, 32)
            >>> output = block(x)
            >>> print(output.shape)
            torch.Size([1, 64, 32, 32])
        """
        super().__init__()
        self.dwconv = nn.Conv2d(
            dim,
            dim,
            kernel_size=kernel_size,
            padding=padding,
            groups=dim if use_dwconv else 1,
        )  # depthwise conv
        self.norm = LayerNorm2d(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(dim, 4 * dim)  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(4 * dim, dim)
        self.gamma = (
            nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True)
            if layer_scale_init_value > 0
            else None
        )
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    def forward(self, x):
        """Applies ConvNeXt block operations to input tensor, including convolutions and residual connection."""
        input = x
        x = self.dwconv(x)
        x = self.norm(x)
        x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)
        if self.gamma is not None:
            x = self.gamma * x
        x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)

        x = input + self.drop_path(x)
        return x


class Fuser(nn.Module):
    """
    A module for fusing features through multiple layers of a neural network.

    This class applies a series of identical layers to an input tensor, optionally projecting the input first.

    Attributes:
        proj (nn.Module): An optional input projection layer. Identity if no projection is needed.
        layers (nn.ModuleList): A list of identical layers to be applied sequentially.

    Methods:
        forward: Applies the fuser to an input tensor.

    Examples:
        >>> layer = CXBlock(dim=256)
        >>> fuser = Fuser(layer, num_layers=3, dim=256, input_projection=True)
        >>> x = torch.randn(1, 256, 32, 32)
        >>> output = fuser(x)
        >>> print(output.shape)
        torch.Size([1, 256, 32, 32])
    """

    def __init__(self, layer, num_layers, dim=None, input_projection=False):
        """
        Initializes the Fuser module for feature fusion through multiple layers.

        This module creates a sequence of identical layers and optionally applies an input projection.

        Args:
            layer (nn.Module): The layer to be replicated in the fuser.
            num_layers (int): The number of times to replicate the layer.
            dim (int | None): The dimension for input projection, if used.
            input_projection (bool): Whether to use input projection.

        Examples:
            >>> layer = nn.Linear(64, 64)
            >>> fuser = Fuser(layer, num_layers=3, dim=64, input_projection=True)
            >>> input_tensor = torch.randn(1, 64)
            >>> output = fuser(input_tensor)
        """
        super().__init__()
        self.proj = nn.Identity()
        self.layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(num_layers)])

        if input_projection:
            assert dim is not None
            self.proj = nn.Conv2d(dim, dim, kernel_size=1)

    def forward(self, x):
        """Applies a series of layers to the input tensor, optionally projecting it first."""
        x = self.proj(x)
        for layer in self.layers:
            x = layer(x)
        return x


class SAM2TwoWayAttentionBlock(TwoWayAttentionBlock):
    """
    A two-way attention block for performing self-attention and cross-attention in both directions.

    This block extends the TwoWayAttentionBlock and consists of four main components: self-attention on
    sparse inputs, cross-attention from sparse to dense inputs, an MLP block on sparse inputs, and
    cross-attention from dense to sparse inputs.

    Attributes:
        self_attn (Attention): Self-attention layer for queries.
        norm1 (nn.LayerNorm): Layer normalization after the first attention block.
        cross_attn_token_to_image (Attention): Cross-attention layer from queries to keys.
        norm2 (nn.LayerNorm): Layer normalization after the second attention block.
        mlp (MLP): MLP block for transforming query embeddings.
        norm3 (nn.LayerNorm): Layer normalization after the MLP block.
        norm4 (nn.LayerNorm): Layer normalization after the third attention block.
        cross_attn_image_to_token (Attention): Cross-attention layer from keys to queries.
        skip_first_layer_pe (bool): Flag to skip positional encoding in the first layer.

    Methods:
        forward: Processes input through the attention blocks and MLP.

    Examples:
        >>> block = SAM2TwoWayAttentionBlock(embedding_dim=256, num_heads=8)
        >>> sparse_input = torch.randn(1, 100, 256)
        >>> dense_input = torch.randn(1, 256, 16, 16)
        >>> sparse_output, dense_output = block(sparse_input, dense_input)
    """

    def __init__(
        self,
        embedding_dim: int,
        num_heads: int,
        mlp_dim: int = 2048,
        activation: Type[nn.Module] = nn.ReLU,
        attention_downsample_rate: int = 2,
        skip_first_layer_pe: bool = False,
    ) -> None:
        """
        Initializes a SAM2TwoWayAttentionBlock for performing self-attention and cross-attention in two directions.

        This block extends the TwoWayAttentionBlock and consists of four main components: self-attention on sparse
        inputs, cross-attention from sparse to dense inputs, an MLP block on sparse inputs, and cross-attention
        from dense to sparse inputs.

        Args:
            embedding_dim (int): The channel dimension of the embeddings.
            num_heads (int): The number of heads in the attention layers.
            mlp_dim (int): The hidden dimension of the MLP block.
            activation (Type[nn.Module]): The activation function of the MLP block.
            attention_downsample_rate (int): The downsample rate for attention computations.
            skip_first_layer_pe (bool): Whether to skip the positional encoding in the first layer.

        Examples:
            >>> block = SAM2TwoWayAttentionBlock(embedding_dim=256, num_heads=8, mlp_dim=2048)
            >>> sparse_inputs = torch.randn(1, 100, 256)
            >>> dense_inputs = torch.randn(1, 256, 32, 32)
            >>> sparse_outputs, dense_outputs = block(sparse_inputs, dense_inputs)
        """
        super().__init__(embedding_dim, num_heads, mlp_dim, activation, attention_downsample_rate, skip_first_layer_pe)
        self.mlp = MLP(embedding_dim, mlp_dim, embedding_dim, num_layers=2, act=activation)


class SAM2TwoWayTransformer(TwoWayTransformer):
    """
    A Two-Way Transformer module for simultaneous attention to image and query points.

    This class extends the TwoWayTransformer, implementing a specialized transformer decoder that attends to an
    input image using queries with supplied positional embeddings. It is particularly useful for tasks like
    object detection, image segmentation, and point cloud processing.

    Attributes:
        depth (int): Number of layers in the transformer.
        embedding_dim (int): Channel dimension for input embeddings.
        num_heads (int): Number of heads for multihead attention.
        mlp_dim (int): Internal channel dimension for the MLP block.
        layers (nn.ModuleList): List of SAM2TwoWayAttentionBlock layers comprising the transformer.
        final_attn_token_to_image (Attention): Final attention layer from queries to image.
        norm_final_attn (nn.LayerNorm): Layer normalization applied to final queries.

    Methods:
        forward: Processes input image embeddings and query embeddings through the transformer.

    Examples:
        >>> transformer = SAM2TwoWayTransformer(depth=5, embedding_dim=256, num_heads=8, mlp_dim=2048)
        >>> image_embedding = torch.randn(1, 256, 64, 64)
        >>> query_embedding = torch.randn(1, 100, 256)
        >>> output = transformer(image_embedding, query_embedding)
        >>> print(output[0].shape, output[1].shape)
        torch.Size([1, 100, 256]) torch.Size([1, 256, 64, 64])
    """

    def __init__(
        self,
        depth: int,
        embedding_dim: int,
        num_heads: int,
        mlp_dim: int,
        activation: Type[nn.Module] = nn.ReLU,
        attention_downsample_rate: int = 2,
    ) -> None:
        """
        Initializes a SAM2TwoWayTransformer instance.

        This transformer decoder attends to an input image using queries with supplied positional embeddings.
        It is designed for tasks like object detection, image segmentation, and point cloud processing.

        Args:
            depth (int): Number of layers in the transformer.
            embedding_dim (int): Channel dimension for the input embeddings.
            num_heads (int): Number of heads for multihead attention. Must divide embedding_dim.
            mlp_dim (int): Channel dimension internal to the MLP block.
            activation (Type[nn.Module]): Activation function to use in the MLP block.
            attention_downsample_rate (int): Downsampling rate for attention computations.

        Examples:
            >>> transformer = SAM2TwoWayTransformer(depth=5, embedding_dim=256, num_heads=8, mlp_dim=2048)
            >>> transformer
            SAM2TwoWayTransformer(
              (layers): ModuleList(
                (0-4): 5 x SAM2TwoWayAttentionBlock(...)
              )
              (final_attn_token_to_image): Attention(...)
              (norm_final_attn): LayerNorm(...)
            )
        """
        super().__init__(depth, embedding_dim, num_heads, mlp_dim, activation, attention_downsample_rate)
        self.layers = nn.ModuleList()
        for i in range(depth):
            self.layers.append(
                SAM2TwoWayAttentionBlock(
                    embedding_dim=embedding_dim,
                    num_heads=num_heads,
                    mlp_dim=mlp_dim,
                    activation=activation,
                    attention_downsample_rate=attention_downsample_rate,
                    skip_first_layer_pe=(i == 0),
                )
            )


class RoPEAttention(Attention):
    """
    Implements rotary position encoding for attention mechanisms in transformer architectures.

    This class extends the base Attention class by incorporating Rotary Position Encoding (RoPE) to enhance
    the positional awareness of the attention mechanism.

    Attributes:
        compute_cis (Callable): Function to compute axial complex numbers for rotary encoding.
        freqs_cis (Tensor): Precomputed frequency tensor for rotary encoding.
        rope_k_repeat (bool): Flag to repeat query RoPE to match key length for cross-attention to memories.

    Methods:
        forward: Applies rotary position encoding and computes attention between query, key, and value tensors.

    Examples:
        >>> rope_attn = RoPEAttention(embedding_dim=256, num_heads=8, rope_theta=10000.0, feat_sizes=(32, 32))
        >>> q = torch.randn(1, 1024, 256)
        >>> k = torch.randn(1, 1024, 256)
        >>> v = torch.randn(1, 1024, 256)
        >>> output = rope_attn(q, k, v)
        >>> print(output.shape)
        torch.Size([1, 1024, 256])
    """

    def __init__(
        self,
        *args,
        rope_theta=10000.0,
        rope_k_repeat=False,
        feat_sizes=(32, 32),  # [w, h] for stride 16 feats at 512 resolution
        **kwargs,
    ):
        """Initializes RoPEAttention with rotary position encoding for enhanced positional awareness."""
        super().__init__(*args, **kwargs)

        self.compute_cis = partial(compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta)
        freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1])
        self.freqs_cis = freqs_cis
        self.rope_k_repeat = rope_k_repeat  # repeat q rope to match k length, needed for cross-attention to memories

    def forward(self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0) -> Tensor:
        """Applies rotary position encoding and computes attention between query, key, and value tensors."""
        q = self.q_proj(q)
        k = self.k_proj(k)
        v = self.v_proj(v)

        # Separate into heads
        q = self._separate_heads(q, self.num_heads)
        k = self._separate_heads(k, self.num_heads)
        v = self._separate_heads(v, self.num_heads)

        # Apply rotary position encoding
        w = h = math.sqrt(q.shape[-2])
        self.freqs_cis = self.freqs_cis.to(q.device)
        if self.freqs_cis.shape[0] != q.shape[-2]:
            self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device)
        if q.shape[-2] != k.shape[-2]:
            assert self.rope_k_repeat

        num_k_rope = k.size(-2) - num_k_exclude_rope
        q, k[:, :, :num_k_rope] = apply_rotary_enc(
            q,
            k[:, :, :num_k_rope],
            freqs_cis=self.freqs_cis,
            repeat_freqs_k=self.rope_k_repeat,
        )

        # Attention
        _, _, _, c_per_head = q.shape
        attn = q @ k.permute(0, 1, 3, 2)  # B x N_heads x N_tokens x N_tokens
        attn = attn / math.sqrt(c_per_head)
        attn = torch.softmax(attn, dim=-1)

        # Get output
        out = attn @ v

        out = self._recombine_heads(out)
        out = self.out_proj(out)

        return out


def do_pool(x: torch.Tensor, pool: nn.Module, norm: nn.Module = None) -> torch.Tensor:
    """Applies pooling and optional normalization to a tensor, handling spatial dimension permutations."""
    if pool is None:
        return x
    # (B, H, W, C) -> (B, C, H, W)
    x = x.permute(0, 3, 1, 2)
    x = pool(x)
    # (B, C, H', W') -> (B, H', W', C)
    x = x.permute(0, 2, 3, 1)
    if norm:
        x = norm(x)

    return x


class MultiScaleAttention(nn.Module):
    """
    Implements multiscale self-attention with optional query pooling for efficient feature extraction.

    This class provides a flexible implementation of multiscale attention, allowing for optional
    downsampling of query features through pooling. It's designed to enhance the model's ability to
    capture multiscale information in visual tasks.

    Attributes:
        dim (int): Input dimension of the feature map.
        dim_out (int): Output dimension of the attention module.
        num_heads (int): Number of attention heads.
        scale (float): Scaling factor for dot-product attention.
        q_pool (nn.Module | None): Optional pooling module for query features.
        qkv (nn.Linear): Linear projection for query, key, and value.
        proj (nn.Linear): Output projection.

    Methods:
        forward: Applies multiscale attention to the input tensor.

    Examples:
        >>> import torch
        >>> from torch import nn
        >>> x = torch.randn(1, 64, 64, 256)
        >>> msa = MultiScaleAttention(dim=256, dim_out=256, num_heads=8)
        >>> output = msa(x)
        >>> print(output.shape)
        torch.Size([1, 64, 64, 256])
    """

    def __init__(
        self,
        dim: int,
        dim_out: int,
        num_heads: int,
        q_pool: nn.Module = None,
    ):
        """Initializes multiscale attention with optional query pooling for efficient feature extraction."""
        super().__init__()

        self.dim = dim
        self.dim_out = dim_out

        self.num_heads = num_heads
        head_dim = dim_out // num_heads
        self.scale = head_dim**-0.5

        self.q_pool = q_pool
        self.qkv = nn.Linear(dim, dim_out * 3)
        self.proj = nn.Linear(dim_out, dim_out)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Applies multiscale attention with optional query pooling to extract multiscale features."""
        B, H, W, _ = x.shape
        # qkv with shape (B, H * W, 3, nHead, C)
        qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1)
        # q, k, v with shape (B, H * W, nheads, C)
        q, k, v = torch.unbind(qkv, 2)

        # Q pooling (for downsample at stage changes)
        if self.q_pool:
            q = do_pool(q.reshape(B, H, W, -1), self.q_pool)
            H, W = q.shape[1:3]  # downsampled shape
            q = q.reshape(B, H * W, self.num_heads, -1)

        # Torch's SDPA expects [B, nheads, H*W, C] so we transpose
        x = F.scaled_dot_product_attention(
            q.transpose(1, 2),
            k.transpose(1, 2),
            v.transpose(1, 2),
        )
        # Transpose back
        x = x.transpose(1, 2)
        x = x.reshape(B, H, W, -1)

        x = self.proj(x)

        return x


class MultiScaleBlock(nn.Module):
    """
    A multiscale attention block with window partitioning and query pooling for efficient vision transformers.

    This class implements a multiscale attention mechanism with optional window partitioning and downsampling,
    designed for use in vision transformer architectures.

    Attributes:
        dim (int): Input dimension of the block.
        dim_out (int): Output dimension of the block.
        norm1 (nn.Module): First normalization layer.
        window_size (int): Size of the window for partitioning.
        pool (nn.Module | None): Pooling layer for query downsampling.
        q_stride (Tuple[int, int] | None): Stride for query pooling.
        attn (MultiScaleAttention): Multi-scale attention module.
        drop_path (nn.Module): Drop path layer for regularization.
        norm2 (nn.Module): Second normalization layer.
        mlp (MLP): Multi-layer perceptron module.
        proj (nn.Linear | None): Projection layer for dimension mismatch.

    Methods:
        forward: Processes input tensor through the multiscale block.

    Examples:
        >>> block = MultiScaleBlock(dim=256, dim_out=512, num_heads=8, window_size=7)
        >>> x = torch.randn(1, 56, 56, 256)
        >>> output = block(x)
        >>> print(output.shape)
        torch.Size([1, 28, 28, 512])
    """

    def __init__(
        self,
        dim: int,
        dim_out: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        drop_path: float = 0.0,
        norm_layer: Union[nn.Module, str] = "LayerNorm",
        q_stride: Tuple[int, int] = None,
        act_layer: nn.Module = nn.GELU,
        window_size: int = 0,
    ):
        """Initializes a multiscale attention block with window partitioning and optional query pooling."""
        super().__init__()

        if isinstance(norm_layer, str):
            norm_layer = partial(getattr(nn, norm_layer), eps=1e-6)

        self.dim = dim
        self.dim_out = dim_out
        self.norm1 = norm_layer(dim)

        self.window_size = window_size

        self.pool, self.q_stride = None, q_stride
        if self.q_stride:
            self.pool = nn.MaxPool2d(kernel_size=q_stride, stride=q_stride, ceil_mode=False)

        self.attn = MultiScaleAttention(
            dim,
            dim_out,
            num_heads=num_heads,
            q_pool=self.pool,
        )
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        self.norm2 = norm_layer(dim_out)
        self.mlp = MLP(
            dim_out,
            int(dim_out * mlp_ratio),
            dim_out,
            num_layers=2,
            act=act_layer,
        )

        if dim != dim_out:
            self.proj = nn.Linear(dim, dim_out)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Processes input through multiscale attention and MLP, with optional windowing and downsampling."""
        shortcut = x  # B, H, W, C
        x = self.norm1(x)

        # Skip connection
        if self.dim != self.dim_out:
            shortcut = do_pool(self.proj(x), self.pool)

        # Window partition
        window_size = self.window_size
        if window_size > 0:
            H, W = x.shape[1], x.shape[2]
            x, pad_hw = window_partition(x, window_size)

        # Window Attention + Q Pooling (if stage change)
        x = self.attn(x)
        if self.q_stride:
            # Shapes have changed due to Q pooling
            window_size = self.window_size // self.q_stride[0]
            H, W = shortcut.shape[1:3]

            pad_h = (window_size - H % window_size) % window_size
            pad_w = (window_size - W % window_size) % window_size
            pad_hw = (H + pad_h, W + pad_w)

        # Reverse window partition
        if self.window_size > 0:
            x = window_unpartition(x, window_size, pad_hw, (H, W))

        x = shortcut + self.drop_path(x)
        # MLP
        x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


class PositionEmbeddingSine(nn.Module):
    """
    A module for generating sinusoidal positional embeddings for 2D inputs like images.

    This class implements sinusoidal position encoding for 2D spatial positions, which can be used in
    transformer-based models for computer vision tasks.

    Attributes:
        num_pos_feats (int): Number of positional features (half of the embedding dimension).
        temperature (int): Temperature parameter for the sinusoidal functions.
        normalize (bool): Whether to normalize the positional embeddings.
        scale (float): Scaling factor for the embeddings when normalize is True.
        cache (Dict): Cache for storing precomputed embeddings.

    Methods:
        _encode_xy: Encodes 2D positions using sine and cosine functions.
        encode_boxes: Encodes box coordinates and dimensions into positional embeddings.
        encode_points: Encodes 2D point coordinates with sinusoidal positional embeddings.
        forward: Generates sinusoidal position embeddings for 2D inputs.

    Examples:
        >>> pos_emb = PositionEmbeddingSine(num_pos_feats=128)
        >>> x = torch.randn(1, 3, 224, 224)
        >>> embeddings = pos_emb(x)
        >>> print(embeddings.shape)
        torch.Size([1, 256, 224, 224])
    """

    def __init__(
        self,
        num_pos_feats,
        temperature: int = 10000,
        normalize: bool = True,
        scale: Optional[float] = None,
    ):
        """Initializes sinusoidal position embeddings for 2D image inputs."""
        super().__init__()
        assert num_pos_feats % 2 == 0, "Expecting even model width"
        self.num_pos_feats = num_pos_feats // 2
        self.temperature = temperature
        self.normalize = normalize
        if scale is not None and not normalize:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale

        self.cache = {}

    def _encode_xy(self, x, y):
        """Encodes 2D positions using sine/cosine functions for transformer positional embeddings."""
        assert len(x) == len(y) and x.ndim == y.ndim == 1
        x_embed = x * self.scale
        y_embed = y * self.scale

        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)

        pos_x = x_embed[:, None] / dim_t
        pos_y = y_embed[:, None] / dim_t
        pos_x = torch.stack((pos_x[:, 0::2].sin(), pos_x[:, 1::2].cos()), dim=2).flatten(1)
        pos_y = torch.stack((pos_y[:, 0::2].sin(), pos_y[:, 1::2].cos()), dim=2).flatten(1)
        return pos_x, pos_y

    @torch.no_grad()
    def encode_boxes(self, x, y, w, h):
        """Encodes box coordinates and dimensions into positional embeddings for detection."""
        pos_x, pos_y = self._encode_xy(x, y)
        return torch.cat((pos_y, pos_x, h[:, None], w[:, None]), dim=1)

    encode = encode_boxes  # Backwards compatibility

    @torch.no_grad()
    def encode_points(self, x, y, labels):
        """Encodes 2D points with sinusoidal embeddings and appends labels."""
        (bx, nx), (by, ny), (bl, nl) = x.shape, y.shape, labels.shape
        assert bx == by and nx == ny and bx == bl and nx == nl
        pos_x, pos_y = self._encode_xy(x.flatten(), y.flatten())
        pos_x, pos_y = pos_x.reshape(bx, nx, -1), pos_y.reshape(by, ny, -1)
        return torch.cat((pos_y, pos_x, labels[:, :, None]), dim=2)

    @torch.no_grad()
    def forward(self, x: torch.Tensor):
        """Generates sinusoidal position embeddings for 2D inputs like images."""
        cache_key = (x.shape[-2], x.shape[-1])
        if cache_key in self.cache:
            return self.cache[cache_key][None].repeat(x.shape[0], 1, 1, 1)
        y_embed = (
            torch.arange(1, x.shape[-2] + 1, dtype=torch.float32, device=x.device)
            .view(1, -1, 1)
            .repeat(x.shape[0], 1, x.shape[-1])
        )
        x_embed = (
            torch.arange(1, x.shape[-1] + 1, dtype=torch.float32, device=x.device)
            .view(1, 1, -1)
            .repeat(x.shape[0], x.shape[-2], 1)
        )

        if self.normalize:
            eps = 1e-6
            y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
            x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale

        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)

        pos_x = x_embed[:, :, :, None] / dim_t
        pos_y = y_embed[:, :, :, None] / dim_t
        pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
        self.cache[cache_key] = pos[0]
        return pos


class PositionEmbeddingRandom(nn.Module):
    """
    Positional encoding using random spatial frequencies.

    This class generates positional embeddings for input coordinates using random spatial frequencies. It is
    particularly useful for transformer-based models that require position information.

    Attributes:
        positional_encoding_gaussian_matrix (torch.Tensor): A buffer containing random values for encoding.

    Methods:
        _pe_encoding: Positionally encodes points that are normalized to [0,1].
        forward: Generates positional encoding for a grid of the specified size.
        forward_with_coords: Positionally encodes points that are not normalized to [0,1].

    Examples:
        >>> pe = PositionEmbeddingRandom(num_pos_feats=64)
        >>> size = (32, 32)
        >>> encoding = pe(size)
        >>> print(encoding.shape)
        torch.Size([128, 32, 32])
    """

    def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
        """Initializes random spatial frequency position embedding for transformers."""
        super().__init__()
        if scale is None or scale <= 0.0:
            scale = 1.0
        self.register_buffer("positional_encoding_gaussian_matrix", scale * torch.randn((2, num_pos_feats)))

        # Set non-deterministic for forward() error 'cumsum_cuda_kernel does not have a deterministic implementation'
        torch.use_deterministic_algorithms(False)
        torch.backends.cudnn.deterministic = False

    def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
        """Encodes normalized [0,1] coordinates using random spatial frequencies."""
        # Assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
        coords = 2 * coords - 1
        coords = coords @ self.positional_encoding_gaussian_matrix
        coords = 2 * np.pi * coords
        # Outputs d_1 x ... x d_n x C shape
        return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)

    def forward(self, size: Tuple[int, int]) -> torch.Tensor:
        """Generates positional encoding for a grid using random spatial frequencies."""
        h, w = size
        device: Any = self.positional_encoding_gaussian_matrix.device
        grid = torch.ones((h, w), device=device, dtype=torch.float32)
        y_embed = grid.cumsum(dim=0) - 0.5
        x_embed = grid.cumsum(dim=1) - 0.5
        y_embed = y_embed / h
        x_embed = x_embed / w

        pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
        return pe.permute(2, 0, 1)  # C x H x W

    def forward_with_coords(self, coords_input: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor:
        """Positionally encodes input coordinates, normalizing them to [0,1] based on the given image size."""
        coords = coords_input.clone()
        coords[:, :, 0] = coords[:, :, 0] / image_size[1]
        coords[:, :, 1] = coords[:, :, 1] / image_size[0]
        return self._pe_encoding(coords.to(torch.float))  # B x N x C


class Block(nn.Module):
    """
    Transformer block with support for window attention and residual propagation.

    This class implements a transformer block that can use either global or windowed self-attention,
    followed by a feed-forward network. It supports relative positional embeddings and is designed
    for use in vision transformer architectures.

    Attributes:
        norm1 (nn.Module): First normalization layer.
        attn (REAttention): Self-attention layer with optional relative positional encoding.
        norm2 (nn.Module): Second normalization layer.
        mlp (MLPBlock): Multi-layer perceptron block.
        window_size (int): Size of attention window. If 0, global attention is used.

    Methods:
        forward: Processes input through the transformer block.

    Examples:
        >>> import torch
        >>> block = Block(dim=256, num_heads=8, window_size=7)
        >>> x = torch.randn(1, 56, 56, 256)
        >>> output = block(x)
        >>> print(output.shape)
        torch.Size([1, 56, 56, 256])
    """

    def __init__(
        self,
        dim: int,
        num_heads: int,
        mlp_ratio: float = 4.0,
        qkv_bias: bool = True,
        norm_layer: Type[nn.Module] = nn.LayerNorm,
        act_layer: Type[nn.Module] = nn.GELU,
        use_rel_pos: bool = False,
        rel_pos_zero_init: bool = True,
        window_size: int = 0,
        input_size: Optional[Tuple[int, int]] = None,
    ) -> None:
        """
        Initializes a transformer block with optional window attention and relative positional embeddings.

        This constructor sets up a transformer block that can use either global or windowed self-attention,
        followed by a feed-forward network. It supports relative positional embeddings and is designed
        for use in vision transformer architectures.

        Args:
            dim (int): Number of input channels.
            num_heads (int): Number of attention heads in the self-attention layer.
            mlp_ratio (float): Ratio of mlp hidden dimension to embedding dimension.
            qkv_bias (bool): If True, adds a learnable bias to query, key, value projections.
            norm_layer (Type[nn.Module]): Type of normalization layer to use.
            act_layer (Type[nn.Module]): Type of activation function to use in the MLP block.
            use_rel_pos (bool): If True, uses relative positional embeddings in attention.
            rel_pos_zero_init (bool): If True, initializes relative positional parameters to zero.
            window_size (int): Size of attention window. If 0, uses global attention.
            input_size (Optional[Tuple[int, int]]): Input resolution for calculating relative positional parameter size.

        Examples:
            >>> block = Block(dim=256, num_heads=8, window_size=7)
            >>> x = torch.randn(1, 56, 56, 256)
            >>> output = block(x)
            >>> print(output.shape)
            torch.Size([1, 56, 56, 256])
        """
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = REAttention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            use_rel_pos=use_rel_pos,
            rel_pos_zero_init=rel_pos_zero_init,
            input_size=input_size if window_size == 0 else (window_size, window_size),
        )

        self.norm2 = norm_layer(dim)
        self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)

        self.window_size = window_size

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Processes input through transformer block with optional windowed self-attention and residual connection."""
        shortcut = x
        x = self.norm1(x)
        # Window partition
        if self.window_size > 0:
            H, W = x.shape[1], x.shape[2]
            x, pad_hw = window_partition(x, self.window_size)

        x = self.attn(x)
        # Reverse window partition
        if self.window_size > 0:
            x = window_unpartition(x, self.window_size, pad_hw, (H, W))

        x = shortcut + x
        return x + self.mlp(self.norm2(x))


class REAttention(nn.Module):
    """
    Rotary Embedding Attention module for efficient self-attention in transformer architectures.

    This class implements a multi-head attention mechanism with rotary positional embeddings, designed
    for use in vision transformer models. It supports optional query pooling and window partitioning
    for efficient processing of large inputs.

    Attributes:
        compute_cis (Callable): Function to compute axial complex numbers for rotary encoding.
        freqs_cis (Tensor): Precomputed frequency tensor for rotary encoding.
        rope_k_repeat (bool): Flag to repeat query RoPE to match key length for cross-attention to memories.
        q_proj (nn.Linear): Linear projection for query.
        k_proj (nn.Linear): Linear projection for key.
        v_proj (nn.Linear): Linear projection for value.
        out_proj (nn.Linear): Output projection.
        num_heads (int): Number of attention heads.
        internal_dim (int): Internal dimension for attention computation.

    Methods:
        forward: Applies rotary position encoding and computes attention between query, key, and value tensors.

    Examples:
        >>> rope_attn = REAttention(embedding_dim=256, num_heads=8, rope_theta=10000.0, feat_sizes=(32, 32))
        >>> q = torch.randn(1, 1024, 256)
        >>> k = torch.randn(1, 1024, 256)
        >>> v = torch.randn(1, 1024, 256)
        >>> output = rope_attn(q, k, v)
        >>> print(output.shape)
        torch.Size([1, 1024, 256])
    """

    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        qkv_bias: bool = True,
        use_rel_pos: bool = False,
        rel_pos_zero_init: bool = True,
        input_size: Optional[Tuple[int, int]] = None,
    ) -> None:
        """
        Initializes a Relative Position Attention module for transformer-based architectures.

        This module implements multi-head attention with optional relative positional encodings, designed
        specifically for vision tasks in transformer models.

        Args:
            dim (int): Number of input channels.
            num_heads (int): Number of attention heads. Default is 8.
            qkv_bias (bool): If True, adds a learnable bias to query, key, value projections. Default is True.
            use_rel_pos (bool): If True, uses relative positional encodings. Default is False.
            rel_pos_zero_init (bool): If True, initializes relative positional parameters to zero. Default is True.
            input_size (Tuple[int, int] | None): Input resolution for calculating relative positional parameter size.
                Required if use_rel_pos is True. Default is None.

        Examples:
            >>> attention = REAttention(dim=256, num_heads=8, input_size=(32, 32))
            >>> x = torch.randn(1, 32, 32, 256)
            >>> output = attention(x)
            >>> print(output.shape)
            torch.Size([1, 32, 32, 256])
        """
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = head_dim**-0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.proj = nn.Linear(dim, dim)

        self.use_rel_pos = use_rel_pos
        if self.use_rel_pos:
            assert input_size is not None, "Input size must be provided if using relative positional encoding."
            # Initialize relative positional embeddings
            self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
            self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Applies multi-head attention with optional relative positional encoding to input tensor."""
        B, H, W, _ = x.shape
        # qkv with shape (3, B, nHead, H * W, C)
        qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        # q, k, v with shape (B * nHead, H * W, C)
        q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)

        attn = (q * self.scale) @ k.transpose(-2, -1)

        if self.use_rel_pos:
            attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))

        attn = attn.softmax(dim=-1)
        x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
        return self.proj(x)


class PatchEmbed(nn.Module):
    """
    Image to Patch Embedding module for vision transformer architectures.

    This module converts an input image into a sequence of patch embeddings using a convolutional layer.
    It is commonly used as the first layer in vision transformer architectures to transform image data
    into a suitable format for subsequent transformer blocks.

    Attributes:
        proj (nn.Conv2d): Convolutional layer for projecting image patches to embeddings.

    Methods:
        forward: Applies patch embedding to the input tensor.

    Examples:
        >>> patch_embed = PatchEmbed(kernel_size=(16, 16), stride=(16, 16), in_chans=3, embed_dim=768)
        >>> x = torch.randn(1, 3, 224, 224)
        >>> output = patch_embed(x)
        >>> print(output.shape)
        torch.Size([1, 768, 14, 14])
    """

    def __init__(
        self,
        kernel_size: Tuple[int, int] = (16, 16),
        stride: Tuple[int, int] = (16, 16),
        padding: Tuple[int, int] = (0, 0),
        in_chans: int = 3,
        embed_dim: int = 768,
    ) -> None:
        """
        Initializes the PatchEmbed module for converting image patches to embeddings.

        This module is typically used as the first layer in vision transformer architectures to transform
        image data into a suitable format for subsequent transformer blocks.

        Args:
            kernel_size (Tuple[int, int]): Size of the convolutional kernel for patch extraction.
            stride (Tuple[int, int]): Stride of the convolutional operation.
            padding (Tuple[int, int]): Padding applied to the input before convolution.
            in_chans (int): Number of input image channels.
            embed_dim (int): Dimensionality of the output patch embeddings.

        Examples:
            >>> patch_embed = PatchEmbed(kernel_size=(16, 16), stride=(16, 16), in_chans=3, embed_dim=768)
            >>> x = torch.randn(1, 3, 224, 224)
            >>> output = patch_embed(x)
            >>> print(output.shape)
            torch.Size([1, 768, 14, 14])
        """
        super().__init__()

        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Computes patch embedding by applying convolution and transposing resulting tensor."""
        return self.proj(x).permute(0, 2, 3, 1)  # B C H W -> B H W C