File size: 6,356 Bytes
a35c8ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4e78e3
a35c8ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4e78e3
a35c8ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import csv
import os.path
import time

import cv2
import gdown
import numpy as np
import streamlit as st
import torch


def load_classes(csv_reader):
    """
    Load classes from csv.

    :param csv_reader: csv
    :return:
    """
    result = {}

    for line, row in enumerate(csv_reader):
        line += 1

        try:
            class_name, class_id = row
        except ValueError:
            raise (ValueError('line {}: format should be \'class_name,class_id\''.format(line)))
        class_id = int(class_id)

        if class_name in result:
            raise ValueError('line {}: duplicate class name: \'{}\''.format(line, class_name))
        result[class_name] = class_id
    return result


@st.cache
def draw_caption(image, box, caption):
    """
    Draw caption and bbox on image.

    :param image: image
    :param box: bounding box
    :param caption: caption
    :return:
    """

    b = np.array(box).astype(int)
    cv2.putText(image, caption, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 0), 2)
    cv2.putText(image, caption, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1)


@st.cache
def load_labels():
    """
    Loads labels.

    :return:
    """

    with open("data/labels.csv", 'r') as f:
        classes = load_classes(csv.reader(f, delimiter=','))

    labels = {}
    for key, value in classes.items():
        labels[value] = key

    return labels


def download_models(ids):
    """
    Download all models.

    :param ids: name and links of models
    :return:
    """

    # Download model from drive if not stored locally
    with st.spinner('Downloading models, this may take a minute...'):
        for key in ids:
            if not os.path.isfile(f"model/{key}.pt"):
                url = f"https://drive.google.com/uc?id={ids[key]}"
                gdown.download(url=url, output=f"model/{key}.pt")


@st.cache(suppress_st_warning=True)
def load_model(model_path, prefix: str = 'model/'):
    """
    Load model.

    :param model_path: path to inference model
    :param prefix: model prefix if needed
    :return:
    """

    # Load model
    if torch.cuda.is_available():
        model = torch.load(f"{prefix}{model_path}.pt").to('cuda')
    else:
        model = torch.load(f"{prefix}{model_path}.pt", map_location=torch.device('cpu'))
        model = model.module.cpu()
    model.training = False
    model.eval()

    return model


def process_img(model, image, labels, caption: bool = True):
    """
    Process img given a model.

    :param caption: whether to use captions or not
    :param image: image to process
    :param model: inference model
    :param labels: given labels
    :return:
    """

    image_orig = image.copy()
    rows, cols, cns = image.shape

    smallest_side = min(rows, cols)

    # Rescale the image
    min_side = 608
    max_side = 1024
    scale = min_side / smallest_side

    # Check if the largest side is now greater than max_side
    largest_side = max(rows, cols)

    if largest_side * scale > max_side:
        scale = max_side / largest_side

    # Resize the image with the computed scale
    image = cv2.resize(image, (int(round(cols * scale)), int(round((rows * scale)))))
    rows, cols, cns = image.shape

    pad_w = 32 - rows % 32
    pad_h = 32 - cols % 32

    new_image = np.zeros((rows + pad_w, cols + pad_h, cns)).astype(np.float32)
    new_image[:rows, :cols, :] = image.astype(np.float32)
    image = new_image.astype(np.float32)
    image /= 255
    image -= [0.485, 0.456, 0.406]
    image /= [0.229, 0.224, 0.225]
    image = np.expand_dims(image, 0)
    image = np.transpose(image, (0, 3, 1, 2))

    with torch.no_grad():

        image = torch.from_numpy(image)
        if torch.cuda.is_available():
            image = image.cuda()

        st = time.time()
        scores, classification, transformed_anchors = model(image.float())
        elapsed_time = time.time() - st
        idxs = np.where(scores.cpu() > 0.5)

        for j in range(idxs[0].shape[0]):
            bbox = transformed_anchors[idxs[0][j], :]

            x1 = int(bbox[0] / scale)
            y1 = int(bbox[1] / scale)
            x2 = int(bbox[2] / scale)
            y2 = int(bbox[3] / scale)
            label_name = labels[int(classification[idxs[0][j]])]
            colors = {
                'with_mask': (0, 255, 0),
                'without_mask': (255, 0, 0),
                'mask_weared_incorrect': (190, 100, 20)
            }
            cap = '{}'.format(label_name) if caption else ''
            draw_caption(image_orig, (x1, y1, x2, y2), cap)
            cv2.rectangle(image_orig, (x1, y1), (x2, y2), color=colors[label_name], thickness=2)
            cv2.putText(image_orig,
                        f"{'{:.1f}'.format(1 / float(elapsed_time))}{'  cuda:' + str(torch.cuda.is_available()).lower()}",
                        fontScale=1, fontFace=cv2.FONT_HERSHEY_PLAIN, org=(10, 20), color=(0, 255, 0))
    return image_orig


# Page config
st.set_page_config(layout="centered")
st.sidebar.title("Face Mask Detection")

# Models drive ids
ids = {
    'resnet50_20': st.secrets['resnet50'],
    'resnet152_20': st.secrets['resnet152'],
}

# Download all models from drive
download_models(ids)

# Model selection
labels = load_labels()
model_path = st.selectbox('Choose a model', options=[k for k in ids], index=0)
model = load_model(model_path=model_path) if model_path != '' else None

# Content
st.title('Face Mask Detection')
st.write('ResNet[18~152] trained for Face Mask Detection. ')
st.markdown(f"__Labels:__ with_mask, without_mask, mask_weared_incorrect")

# Display example selection
index = st.number_input('', min_value=0, max_value=852, value=495, help='Choose an image. ')

left, right = st.columns([3, 1])

# Get corresponding image and transform it
image = cv2.imread(f'data/validation/image/maksssksksss{str(index)}.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

# Process img
with st.spinner('Please wait while the image is being processed... This may take a while. '):
    image = process_img(model, image, labels, caption=False)

left.image(image)

# Write labels dict and device on right
right.write({
    'green': 'with_mask',
    'orange': 'mask_weared_incorrect',
    'red': 'without_mask'
})
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
right.write(device)