File size: 9,684 Bytes
e6ecdf3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from __future__ import print_function

import numpy as np
import json
import os
import matplotlib.pyplot as plt
import torch



def compute_overlap(a, b):
    """
    Parameters
    ----------
    a: (N, 4) ndarray of float
    b: (K, 4) ndarray of float
    Returns
    -------
    overlaps: (N, K) ndarray of overlap between boxes and query_boxes
    """
    area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1])

    iw = np.minimum(np.expand_dims(a[:, 2], axis=1), b[:, 2]) - np.maximum(np.expand_dims(a[:, 0], 1), b[:, 0])
    ih = np.minimum(np.expand_dims(a[:, 3], axis=1), b[:, 3]) - np.maximum(np.expand_dims(a[:, 1], 1), b[:, 1])

    iw = np.maximum(iw, 0)
    ih = np.maximum(ih, 0)

    ua = np.expand_dims((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), axis=1) + area - iw * ih

    ua = np.maximum(ua, np.finfo(float).eps)

    intersection = iw * ih

    return intersection / ua


def _compute_ap(recall, precision):
    """ Compute the average precision, given the recall and precision curves.
    Code originally from https://github.com/rbgirshick/py-faster-rcnn.
    # Arguments
        recall:    The recall curve (list).
        precision: The precision curve (list).
    # Returns
        The average precision as computed in py-faster-rcnn.
    """
    # correct AP calculation
    # first append sentinel values at the end
    mrec = np.concatenate(([0.], recall, [1.]))
    mpre = np.concatenate(([0.], precision, [0.]))

    # compute the precision envelope
    for i in range(mpre.size - 1, 0, -1):
        mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])

    # to calculate area under PR curve, look for points
    # where X axis (recall) changes value
    i = np.where(mrec[1:] != mrec[:-1])[0]

    # and sum (\Delta recall) * prec
    ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
    return ap


def _get_detections(dataset, retinanet, score_threshold=0.05, max_detections=100, save_path=None):
    """ Get the detections from the retinanet using the generator.
    The result is a list of lists such that the size is:
        all_detections[num_images][num_classes] = detections[num_detections, 4 + num_classes]
    # Arguments
        dataset         : The generator used to run images through the retinanet.
        retinanet           : The retinanet to run on the images.
        score_threshold : The score confidence threshold to use.
        max_detections  : The maximum number of detections to use per image.
        save_path       : The path to save the images with visualized detections to.
    # Returns
        A list of lists containing the detections for each image in the generator.
    """
    all_detections = [[None for i in range(dataset.num_classes())] for j in range(len(dataset))]

    retinanet.eval()
    
    with torch.no_grad():

        for index in range(len(dataset)):
            data = dataset[index]
            scale = data['scale']

            # run network
            if torch.cuda.is_available():
                scores, labels, boxes = retinanet(data['img'].permute(2, 0, 1).cuda().float().unsqueeze(dim=0))
            else:
                scores, labels, boxes = retinanet(data['img'].permute(2, 0, 1).float().unsqueeze(dim=0))
            scores = scores.cpu().numpy()
            labels = labels.cpu().numpy()
            boxes  = boxes.cpu().numpy()

            # correct boxes for image scale
            boxes /= scale

            # select indices which have a score above the threshold
            indices = np.where(scores > score_threshold)[0]
            if indices.shape[0] > 0:
                # select those scores
                scores = scores[indices]

                # find the order with which to sort the scores
                scores_sort = np.argsort(-scores)[:max_detections]

                # select detections
                image_boxes      = boxes[indices[scores_sort], :]
                image_scores     = scores[scores_sort]
                image_labels     = labels[indices[scores_sort]]
                image_detections = np.concatenate([image_boxes, np.expand_dims(image_scores, axis=1), np.expand_dims(image_labels, axis=1)], axis=1)

                # copy detections to all_detections
                for label in range(dataset.num_classes()):
                    all_detections[index][label] = image_detections[image_detections[:, -1] == label, :-1]
            else:
                # copy detections to all_detections
                for label in range(dataset.num_classes()):
                    all_detections[index][label] = np.zeros((0, 5))

            print('{}/{}'.format(index + 1, len(dataset)), end='\r')

    return all_detections


def _get_annotations(generator):
    """ Get the ground truth annotations from the generator.
    The result is a list of lists such that the size is:
        all_detections[num_images][num_classes] = annotations[num_detections, 5]
    # Arguments
        generator : The generator used to retrieve ground truth annotations.
    # Returns
        A list of lists containing the annotations for each image in the generator.
    """
    all_annotations = [[None for i in range(generator.num_classes())] for j in range(len(generator))]

    for i in range(len(generator)):
        # load the annotations
        annotations = generator.load_annotations(i)

        # copy detections to all_annotations
        for label in range(generator.num_classes()):
            all_annotations[i][label] = annotations[annotations[:, 4] == label, :4].copy()

        print('{}/{}'.format(i + 1, len(generator)), end='\r')

    return all_annotations


def evaluate(
    generator,
    retinanet,
    iou_threshold=0.5,
    score_threshold=0.05,
    max_detections=100,
    save_path=None
):
    """ Evaluate a given dataset using a given retinanet.
    # Arguments
        generator       : The generator that represents the dataset to evaluate.
        retinanet           : The retinanet to evaluate.
        iou_threshold   : The threshold used to consider when a detection is positive or negative.
        score_threshold : The score confidence threshold to use for detections.
        max_detections  : The maximum number of detections to use per image.
        save_path       : The path to save precision recall curve of each label.
    # Returns
        A dict mapping class names to mAP scores.
    """



    # gather all detections and annotations

    all_detections     = _get_detections(generator, retinanet, score_threshold=score_threshold, max_detections=max_detections, save_path=save_path)
    all_annotations    = _get_annotations(generator)

    average_precisions = {}

    for label in range(generator.num_classes()):
        false_positives = np.zeros((0,))
        true_positives  = np.zeros((0,))
        scores          = np.zeros((0,))
        num_annotations = 0.0

        for i in range(len(generator)):
            detections           = all_detections[i][label]
            annotations          = all_annotations[i][label]
            num_annotations     += annotations.shape[0]
            detected_annotations = []

            for d in detections:
                scores = np.append(scores, d[4])

                if annotations.shape[0] == 0:
                    false_positives = np.append(false_positives, 1)
                    true_positives  = np.append(true_positives, 0)
                    continue

                overlaps            = compute_overlap(np.expand_dims(d, axis=0), annotations)
                assigned_annotation = np.argmax(overlaps, axis=1)
                max_overlap         = overlaps[0, assigned_annotation]

                if max_overlap >= iou_threshold and assigned_annotation not in detected_annotations:
                    false_positives = np.append(false_positives, 0)
                    true_positives  = np.append(true_positives, 1)
                    detected_annotations.append(assigned_annotation)
                else:
                    false_positives = np.append(false_positives, 1)
                    true_positives  = np.append(true_positives, 0)

        # no annotations -> AP for this class is 0 (is this correct?)
        if num_annotations == 0:
            average_precisions[label] = 0, 0
            continue

        # sort by score
        indices         = np.argsort(-scores)
        false_positives = false_positives[indices]
        true_positives  = true_positives[indices]

        # compute false positives and true positives
        false_positives = np.cumsum(false_positives)
        true_positives  = np.cumsum(true_positives)

        # compute recall and precision
        recall    = true_positives / num_annotations
        precision = true_positives / np.maximum(true_positives + false_positives, np.finfo(np.float64).eps)

        # compute average precision
        average_precision  = _compute_ap(recall, precision)
        average_precisions[label] = average_precision, num_annotations


    print('\nmAP:')
    for label in range(generator.num_classes()):
        label_name = generator.label_to_name(label)
        print('{}: {}'.format(label_name, average_precisions[label][0]))
        print("Precision: ",precision[-1])
        print("Recall: ",recall[-1])
        
        if save_path!=None:
            plt.plot(recall,precision)
            # naming the x axis 
            plt.xlabel('Recall') 
            # naming the y axis 
            plt.ylabel('Precision') 

            # giving a title to my graph 
            plt.title('Precision Recall curve') 

            # function to show the plot
            plt.savefig(save_path+'/'+label_name+'_precision_recall.jpg')



    return average_precisions