Spaces:
Build error
Build error
File size: 9,684 Bytes
e6ecdf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
from __future__ import print_function
import numpy as np
import json
import os
import matplotlib.pyplot as plt
import torch
def compute_overlap(a, b):
"""
Parameters
----------
a: (N, 4) ndarray of float
b: (K, 4) ndarray of float
Returns
-------
overlaps: (N, K) ndarray of overlap between boxes and query_boxes
"""
area = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1])
iw = np.minimum(np.expand_dims(a[:, 2], axis=1), b[:, 2]) - np.maximum(np.expand_dims(a[:, 0], 1), b[:, 0])
ih = np.minimum(np.expand_dims(a[:, 3], axis=1), b[:, 3]) - np.maximum(np.expand_dims(a[:, 1], 1), b[:, 1])
iw = np.maximum(iw, 0)
ih = np.maximum(ih, 0)
ua = np.expand_dims((a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1]), axis=1) + area - iw * ih
ua = np.maximum(ua, np.finfo(float).eps)
intersection = iw * ih
return intersection / ua
def _compute_ap(recall, precision):
""" Compute the average precision, given the recall and precision curves.
Code originally from https://github.com/rbgirshick/py-faster-rcnn.
# Arguments
recall: The recall curve (list).
precision: The precision curve (list).
# Returns
The average precision as computed in py-faster-rcnn.
"""
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], recall, [1.]))
mpre = np.concatenate(([0.], precision, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def _get_detections(dataset, retinanet, score_threshold=0.05, max_detections=100, save_path=None):
""" Get the detections from the retinanet using the generator.
The result is a list of lists such that the size is:
all_detections[num_images][num_classes] = detections[num_detections, 4 + num_classes]
# Arguments
dataset : The generator used to run images through the retinanet.
retinanet : The retinanet to run on the images.
score_threshold : The score confidence threshold to use.
max_detections : The maximum number of detections to use per image.
save_path : The path to save the images with visualized detections to.
# Returns
A list of lists containing the detections for each image in the generator.
"""
all_detections = [[None for i in range(dataset.num_classes())] for j in range(len(dataset))]
retinanet.eval()
with torch.no_grad():
for index in range(len(dataset)):
data = dataset[index]
scale = data['scale']
# run network
if torch.cuda.is_available():
scores, labels, boxes = retinanet(data['img'].permute(2, 0, 1).cuda().float().unsqueeze(dim=0))
else:
scores, labels, boxes = retinanet(data['img'].permute(2, 0, 1).float().unsqueeze(dim=0))
scores = scores.cpu().numpy()
labels = labels.cpu().numpy()
boxes = boxes.cpu().numpy()
# correct boxes for image scale
boxes /= scale
# select indices which have a score above the threshold
indices = np.where(scores > score_threshold)[0]
if indices.shape[0] > 0:
# select those scores
scores = scores[indices]
# find the order with which to sort the scores
scores_sort = np.argsort(-scores)[:max_detections]
# select detections
image_boxes = boxes[indices[scores_sort], :]
image_scores = scores[scores_sort]
image_labels = labels[indices[scores_sort]]
image_detections = np.concatenate([image_boxes, np.expand_dims(image_scores, axis=1), np.expand_dims(image_labels, axis=1)], axis=1)
# copy detections to all_detections
for label in range(dataset.num_classes()):
all_detections[index][label] = image_detections[image_detections[:, -1] == label, :-1]
else:
# copy detections to all_detections
for label in range(dataset.num_classes()):
all_detections[index][label] = np.zeros((0, 5))
print('{}/{}'.format(index + 1, len(dataset)), end='\r')
return all_detections
def _get_annotations(generator):
""" Get the ground truth annotations from the generator.
The result is a list of lists such that the size is:
all_detections[num_images][num_classes] = annotations[num_detections, 5]
# Arguments
generator : The generator used to retrieve ground truth annotations.
# Returns
A list of lists containing the annotations for each image in the generator.
"""
all_annotations = [[None for i in range(generator.num_classes())] for j in range(len(generator))]
for i in range(len(generator)):
# load the annotations
annotations = generator.load_annotations(i)
# copy detections to all_annotations
for label in range(generator.num_classes()):
all_annotations[i][label] = annotations[annotations[:, 4] == label, :4].copy()
print('{}/{}'.format(i + 1, len(generator)), end='\r')
return all_annotations
def evaluate(
generator,
retinanet,
iou_threshold=0.5,
score_threshold=0.05,
max_detections=100,
save_path=None
):
""" Evaluate a given dataset using a given retinanet.
# Arguments
generator : The generator that represents the dataset to evaluate.
retinanet : The retinanet to evaluate.
iou_threshold : The threshold used to consider when a detection is positive or negative.
score_threshold : The score confidence threshold to use for detections.
max_detections : The maximum number of detections to use per image.
save_path : The path to save precision recall curve of each label.
# Returns
A dict mapping class names to mAP scores.
"""
# gather all detections and annotations
all_detections = _get_detections(generator, retinanet, score_threshold=score_threshold, max_detections=max_detections, save_path=save_path)
all_annotations = _get_annotations(generator)
average_precisions = {}
for label in range(generator.num_classes()):
false_positives = np.zeros((0,))
true_positives = np.zeros((0,))
scores = np.zeros((0,))
num_annotations = 0.0
for i in range(len(generator)):
detections = all_detections[i][label]
annotations = all_annotations[i][label]
num_annotations += annotations.shape[0]
detected_annotations = []
for d in detections:
scores = np.append(scores, d[4])
if annotations.shape[0] == 0:
false_positives = np.append(false_positives, 1)
true_positives = np.append(true_positives, 0)
continue
overlaps = compute_overlap(np.expand_dims(d, axis=0), annotations)
assigned_annotation = np.argmax(overlaps, axis=1)
max_overlap = overlaps[0, assigned_annotation]
if max_overlap >= iou_threshold and assigned_annotation not in detected_annotations:
false_positives = np.append(false_positives, 0)
true_positives = np.append(true_positives, 1)
detected_annotations.append(assigned_annotation)
else:
false_positives = np.append(false_positives, 1)
true_positives = np.append(true_positives, 0)
# no annotations -> AP for this class is 0 (is this correct?)
if num_annotations == 0:
average_precisions[label] = 0, 0
continue
# sort by score
indices = np.argsort(-scores)
false_positives = false_positives[indices]
true_positives = true_positives[indices]
# compute false positives and true positives
false_positives = np.cumsum(false_positives)
true_positives = np.cumsum(true_positives)
# compute recall and precision
recall = true_positives / num_annotations
precision = true_positives / np.maximum(true_positives + false_positives, np.finfo(np.float64).eps)
# compute average precision
average_precision = _compute_ap(recall, precision)
average_precisions[label] = average_precision, num_annotations
print('\nmAP:')
for label in range(generator.num_classes()):
label_name = generator.label_to_name(label)
print('{}: {}'.format(label_name, average_precisions[label][0]))
print("Precision: ",precision[-1])
print("Recall: ",recall[-1])
if save_path!=None:
plt.plot(recall,precision)
# naming the x axis
plt.xlabel('Recall')
# naming the y axis
plt.ylabel('Precision')
# giving a title to my graph
plt.title('Precision Recall curve')
# function to show the plot
plt.savefig(save_path+'/'+label_name+'_precision_recall.jpg')
return average_precisions
|