sunwaee's picture
updated page for uploaded files
0516a4f
raw
history blame
6.7 kB
import csv
import os.path
import time
import cv2
import gdown
import numpy as np
import streamlit as st
import torch
from PIL import Image
def load_classes(csv_reader):
"""
Load classes from csv.
:param csv_reader: csv
:return:
"""
result = {}
for line, row in enumerate(csv_reader):
line += 1
try:
class_name, class_id = row
except ValueError:
raise (ValueError('line {}: format should be \'class_name,class_id\''.format(line)))
class_id = int(class_id)
if class_name in result:
raise ValueError('line {}: duplicate class name: \'{}\''.format(line, class_name))
result[class_name] = class_id
return result
@st.cache
def draw_caption(image, box, caption):
"""
Draw caption and bbox on image.
:param image: image
:param box: bounding box
:param caption: caption
:return:
"""
b = np.array(box).astype(int)
cv2.putText(image, caption, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 0), 2)
cv2.putText(image, caption, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1)
@st.cache
def load_labels():
"""
Loads labels.
:return:
"""
with open("data/labels.csv", 'r') as f:
classes = load_classes(csv.reader(f, delimiter=','))
labels = {}
for key, value in classes.items():
labels[value] = key
return labels
def download_models(ids):
"""
Download all models.
:param ids: name and links of models
:return:
"""
# Download model from drive if not stored locally
with st.spinner('Downloading models, this may take a minute...'):
for key in ids:
if not os.path.isfile(f"model/{key}.pt"):
url = f"https://drive.google.com/uc?id={ids[key]}"
gdown.download(url=url, output=f"model/{key}.pt")
@st.cache(suppress_st_warning=True)
def load_model(model_path, prefix: str = 'model/'):
"""
Load model.
:param model_path: path to inference model
:param prefix: model prefix if needed
:return:
"""
# Load model
if torch.cuda.is_available():
model = torch.load(f"{prefix}{model_path}.pt").to('cuda')
else:
model = torch.load(f"{prefix}{model_path}.pt", map_location=torch.device('cpu'))
model = model.module.cpu()
model.training = False
model.eval()
return model
def process_img(model, image, labels, caption: bool = True, thickness=2):
"""
Process img given a model.
:param caption: whether to use captions or not
:param image: image to process
:param model: inference model
:param labels: given labels
:param thickness: thickness of bboxes
:return:
"""
image_orig = image.copy()
rows, cols, cns = image.shape
smallest_side = min(rows, cols)
# Rescale the image
min_side = 608
max_side = 1024
scale = min_side / smallest_side
# Check if the largest side is now greater than max_side
largest_side = max(rows, cols)
if largest_side * scale > max_side:
scale = max_side / largest_side
# Resize the image with the computed scale
image = cv2.resize(image, (int(round(cols * scale)), int(round((rows * scale)))))
rows, cols, cns = image.shape
pad_w = 32 - rows % 32
pad_h = 32 - cols % 32
new_image = np.zeros((rows + pad_w, cols + pad_h, cns)).astype(np.float32)
new_image[:rows, :cols, :] = image.astype(np.float32)
image = new_image.astype(np.float32)
image /= 255
image -= [0.485, 0.456, 0.406]
image /= [0.229, 0.224, 0.225]
image = np.expand_dims(image, 0)
image = np.transpose(image, (0, 3, 1, 2))
with torch.no_grad():
image = torch.from_numpy(image)
if torch.cuda.is_available():
image = image.cuda()
st = time.time()
scores, classification, transformed_anchors = model(image.float())
elapsed_time = time.time() - st
idxs = np.where(scores.cpu() > 0.5)
for j in range(idxs[0].shape[0]):
bbox = transformed_anchors[idxs[0][j], :]
x1 = int(bbox[0] / scale)
y1 = int(bbox[1] / scale)
x2 = int(bbox[2] / scale)
y2 = int(bbox[3] / scale)
label_name = labels[int(classification[idxs[0][j]])]
colors = {
'with_mask': (0, 255, 0),
'without_mask': (255, 0, 0),
'mask_weared_incorrect': (190, 100, 20)
}
cap = '{}'.format(label_name) if caption else ''
draw_caption(image_orig, (x1, y1, x2, y2), cap)
cv2.rectangle(image_orig, (x1, y1), (x2, y2), color=colors[label_name],
thickness=int(1 * (smallest_side / 100)))
return image_orig
# Page config
st.set_page_config(layout="centered")
st.title("Face Mask Detection")
st.write('Face Mask Detection on images, videos and webcam feed with ResNet[18~152] models. ')
st.markdown(f"__Labels:__ with_mask, without_mask, mask_weared_incorrect")
# Models drive ids
ids = {
'resnet50_20': st.secrets['resnet50'],
'resnet152_20': st.secrets['resnet152'],
}
# Download all models from drive
download_models(ids)
# Split page into columns
left, right = st.columns([5, 3])
# Model selection
labels = load_labels()
model_path = right.selectbox('Choose a model', options=[k for k in ids], index=0)
model = load_model(model_path=model_path) if model_path != '' else None
# Display example selection
index = left.number_input('', min_value=0, max_value=852, value=495, help='Choose an image. ')
# Uploader
uploaded = st.file_uploader("Try it out with your own image!", type=['.jpg', '.png', '.jfif'])
if uploaded is not None:
# Convert file to image
image = Image.open(uploaded)
image = np.array(image)
else:
# Get corresponding image and transform it
image = cv2.imread(f'data/validation/image/maksssksksss{str(index)}.jpg')
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Process img
with st.spinner('Please wait while the image is being processed... This may take a while. '):
image = process_img(model, image, labels, caption=False)
left.image(cv2.resize(image, (450, 300)))
# Write labels dict and device on right
right.write({
'green': 'with_mask',
'orange': 'mask_weared_incorrect',
'red': 'without_mask'
})
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
right.write(device)
captions = [image for image in os.listdir('data/examples/')]
images = [Image.open(f'data/examples/{image}') for image in os.listdir('data/examples/')]
# Display examples
st.image(images, width=350)