sunwaee's picture
added retinanet repo
e6ecdf3
from __future__ import print_function, division
import csv
import json
import os
import warnings
import numpy as np
import skimage
import skimage.color
import skimage.io
import skimage.transform
from PIL import Image
from torch.utils.data import Dataset
def get_labels(metadata_dir, version='v4'):
if version == 'v4' or version == 'challenge2018':
csv_file = 'class-descriptions-boxable.csv' if version == 'v4' else 'challenge-2018-class-descriptions-500.csv'
boxable_classes_descriptions = os.path.join(metadata_dir, csv_file)
id_to_labels = {}
cls_index = {}
i = 0
with open(boxable_classes_descriptions) as f:
for row in csv.reader(f):
# make sure the csv row is not empty (usually the last one)
if len(row):
label = row[0]
description = row[1].replace("\"", "").replace("'", "").replace('`', '')
id_to_labels[i] = description
cls_index[label] = i
i += 1
else:
trainable_classes_path = os.path.join(metadata_dir, 'classes-bbox-trainable.txt')
description_path = os.path.join(metadata_dir, 'class-descriptions.csv')
description_table = {}
with open(description_path) as f:
for row in csv.reader(f):
# make sure the csv row is not empty (usually the last one)
if len(row):
description_table[row[0]] = row[1].replace("\"", "").replace("'", "").replace('`', '')
with open(trainable_classes_path, 'rb') as f:
trainable_classes = f.read().split('\n')
id_to_labels = dict([(i, description_table[c]) for i, c in enumerate(trainable_classes)])
cls_index = dict([(c, i) for i, c in enumerate(trainable_classes)])
return id_to_labels, cls_index
def generate_images_annotations_json(main_dir, metadata_dir, subset, cls_index, version='v4'):
validation_image_ids = {}
if version == 'v4':
annotations_path = os.path.join(metadata_dir, subset, '{}-annotations-bbox.csv'.format(subset))
elif version == 'challenge2018':
validation_image_ids_path = os.path.join(metadata_dir, 'challenge-2018-image-ids-valset-od.csv')
with open(validation_image_ids_path, 'r') as csv_file:
reader = csv.DictReader(csv_file, fieldnames=['ImageID'])
reader.next()
for line, row in enumerate(reader):
image_id = row['ImageID']
validation_image_ids[image_id] = True
annotations_path = os.path.join(metadata_dir, 'challenge-2018-train-annotations-bbox.csv')
else:
annotations_path = os.path.join(metadata_dir, subset, 'annotations-human-bbox.csv')
fieldnames = ['ImageID', 'Source', 'LabelName', 'Confidence',
'XMin', 'XMax', 'YMin', 'YMax',
'IsOccluded', 'IsTruncated', 'IsGroupOf', 'IsDepiction', 'IsInside']
id_annotations = dict()
with open(annotations_path, 'r') as csv_file:
reader = csv.DictReader(csv_file, fieldnames=fieldnames)
next(reader)
images_sizes = {}
for line, row in enumerate(reader):
frame = row['ImageID']
if version == 'challenge2018':
if subset == 'train':
if frame in validation_image_ids:
continue
elif subset == 'validation':
if frame not in validation_image_ids:
continue
else:
raise NotImplementedError('This generator handles only the train and validation subsets')
class_name = row['LabelName']
if class_name not in cls_index:
continue
cls_id = cls_index[class_name]
if version == 'challenge2018':
# We recommend participants to use the provided subset of the training set as a validation set.
# This is preferable over using the V4 val/test sets, as the training set is more densely annotated.
img_path = os.path.join(main_dir, 'images', 'train', frame + '.jpg')
else:
img_path = os.path.join(main_dir, 'images', subset, frame + '.jpg')
if frame in images_sizes:
width, height = images_sizes[frame]
else:
try:
with Image.open(img_path) as img:
width, height = img.width, img.height
images_sizes[frame] = (width, height)
except Exception as ex:
if version == 'challenge2018':
raise ex
continue
x1 = float(row['XMin'])
x2 = float(row['XMax'])
y1 = float(row['YMin'])
y2 = float(row['YMax'])
x1_int = int(round(x1 * width))
x2_int = int(round(x2 * width))
y1_int = int(round(y1 * height))
y2_int = int(round(y2 * height))
# Check that the bounding box is valid.
if x2 <= x1:
raise ValueError('line {}: x2 ({}) must be higher than x1 ({})'.format(line, x2, x1))
if y2 <= y1:
raise ValueError('line {}: y2 ({}) must be higher than y1 ({})'.format(line, y2, y1))
if y2_int == y1_int:
warnings.warn('filtering line {}: rounding y2 ({}) and y1 ({}) makes them equal'.format(line, y2, y1))
continue
if x2_int == x1_int:
warnings.warn('filtering line {}: rounding x2 ({}) and x1 ({}) makes them equal'.format(line, x2, x1))
continue
img_id = row['ImageID']
annotation = {'cls_id': cls_id, 'x1': x1, 'x2': x2, 'y1': y1, 'y2': y2}
if img_id in id_annotations:
annotations = id_annotations[img_id]
annotations['boxes'].append(annotation)
else:
id_annotations[img_id] = {'w': width, 'h': height, 'boxes': [annotation]}
return id_annotations
class OidDataset(Dataset):
"""Oid dataset."""
def __init__(self, main_dir, subset, version='v4', annotation_cache_dir='.', transform=None):
if version == 'v4':
metadata = '2018_04'
elif version == 'challenge2018':
metadata = 'challenge2018'
elif version == 'v3':
metadata = '2017_11'
else:
raise NotImplementedError('There is currently no implementation for versions older than v3')
self.transform = transform
if version == 'challenge2018':
self.base_dir = os.path.join(main_dir, 'images', 'train')
else:
self.base_dir = os.path.join(main_dir, 'images', subset)
metadata_dir = os.path.join(main_dir, metadata)
annotation_cache_json = os.path.join(annotation_cache_dir, subset + '.json')
self.id_to_labels, cls_index = get_labels(metadata_dir, version=version)
if os.path.exists(annotation_cache_json):
with open(annotation_cache_json, 'r') as f:
self.annotations = json.loads(f.read())
else:
self.annotations = generate_images_annotations_json(main_dir, metadata_dir, subset, cls_index,
version=version)
json.dump(self.annotations, open(annotation_cache_json, "w"))
self.id_to_image_id = dict([(i, k) for i, k in enumerate(self.annotations)])
# (label -> name)
self.labels = self.id_to_labels
def __len__(self):
return len(self.annotations)
def __getitem__(self, idx):
img = self.load_image(idx)
annot = self.load_annotations(idx)
sample = {'img': img, 'annot': annot}
if self.transform:
sample = self.transform(sample)
return sample
def image_path(self, image_index):
path = os.path.join(self.base_dir, self.id_to_image_id[image_index] + '.jpg')
return path
def load_image(self, image_index):
path = self.image_path(image_index)
img = skimage.io.imread(path)
if len(img.shape) == 1:
img = img[0]
if len(img.shape) == 2:
img = skimage.color.gray2rgb(img)
try:
return img.astype(np.float32) / 255.0
except Exception:
print (path)
exit(0)
def load_annotations(self, image_index):
# get ground truth annotations
image_annotations = self.annotations[self.id_to_image_id[image_index]]
labels = image_annotations['boxes']
height, width = image_annotations['h'], image_annotations['w']
boxes = np.zeros((len(labels), 5))
for idx, ann in enumerate(labels):
cls_id = ann['cls_id']
x1 = ann['x1'] * width
x2 = ann['x2'] * width
y1 = ann['y1'] * height
y2 = ann['y2'] * height
boxes[idx, 0] = x1
boxes[idx, 1] = y1
boxes[idx, 2] = x2
boxes[idx, 3] = y2
boxes[idx, 4] = cls_id
return boxes
def image_aspect_ratio(self, image_index):
img_annotations = self.annotations[self.id_to_image_id[image_index]]
height, width = img_annotations['h'], img_annotations['w']
return float(width) / float(height)
def num_classes(self):
return len(self.id_to_labels)