Spaces:
Running
Running
import streamlit as st | |
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from llama_index.legacy.callbacks import CallbackManager | |
from llama_index.llms.openai_like import OpenAILike | |
# Create an instance of CallbackManager | |
callback_manager = CallbackManager() | |
api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/" | |
model = "internlm2.5-latest" | |
api_key = st.secrets["puyu_api"] | |
# api_base_url = "https://api.siliconflow.cn/v1" | |
# model = "internlm/internlm2_5-7b-chat" | |
# api_key = "请填写 API Key" | |
llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager) | |
st.set_page_config(page_title="llama_index_sunxiaokang", page_icon="🦜🔗") | |
st.title("llama_index_sunxiaokang") | |
# 初始化模型 | |
def init_models(): | |
embed_model = HuggingFaceEmbedding( | |
model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" | |
) | |
Settings.embed_model = embed_model | |
#用初始化llm | |
Settings.llm = llm | |
documents = SimpleDirectoryReader("data").load_data() | |
index = VectorStoreIndex.from_documents(documents) | |
query_engine = index.as_query_engine() | |
return query_engine | |
# 检查是否需要初始化模型 | |
if 'query_engine' not in st.session_state: | |
st.session_state['query_engine'] = init_models() | |
def greet2(question): | |
response = st.session_state['query_engine'].query(question) | |
return response | |
# Store LLM generated responses | |
if "messages" not in st.session_state.keys(): | |
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}] | |
# Display or clear chat messages | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |
def clear_chat_history(): | |
st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}] | |
st.sidebar.button('Clear Chat History', on_click=clear_chat_history) | |
# Function for generating LLaMA2 response | |
def generate_llama_index_response(prompt_input): | |
return greet2(prompt_input) | |
# User-provided prompt | |
if prompt := st.chat_input(): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.write(prompt) | |
# Gegenerate_llama_index_response last message is not from assistant | |
if st.session_state.messages[-1]["role"] != "assistant": | |
with st.chat_message("assistant"): | |
with st.spinner("Thinking..."): | |
response = generate_llama_index_response(prompt) | |
placeholder = st.empty() | |
placeholder.markdown(response) | |
message = {"role": "assistant", "content": response} | |
st.session_state.messages.append(message) | |