Spaces:
Sleeping
Sleeping
Upload 10 files
Browse files- app.py +76 -0
- examples/im175.png +0 -0
- examples/im867.png +0 -0
- examples/im90.png +0 -0
- facial-detection.ipynb +524 -0
- facial-detection.py +374 -0
- model.py +34 -0
- models/checkpoint.pth +3 -0
- models/efficientnet_b0.pth +3 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### 1. Imports and class names setup ###
|
2 |
+
import gradio as gr
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
from model import create_effnetb0_model
|
6 |
+
from timeit import default_timer as timer
|
7 |
+
from typing import Tuple, Dict
|
8 |
+
from torchvision import transforms
|
9 |
+
|
10 |
+
# Setup class names
|
11 |
+
class_names = ["Happy", "Disgusted", "Suprised","Angry","Neutral","Sad","Fearful"]
|
12 |
+
|
13 |
+
# Create EffNetB2 model
|
14 |
+
effnetb0, effnetb0_transforms = create_effnetb0_model(
|
15 |
+
num_classes=7, # len(class_names) would also work
|
16 |
+
)
|
17 |
+
|
18 |
+
# Load saved weights
|
19 |
+
|
20 |
+
|
21 |
+
# Load saved weights
|
22 |
+
effnetb0.load_state_dict(
|
23 |
+
torch.load(
|
24 |
+
f="models/efficientnet_b0.pth",
|
25 |
+
map_location=torch.device("cpu"), # load to CPU
|
26 |
+
)
|
27 |
+
)
|
28 |
+
|
29 |
+
### 3. Predict function ###
|
30 |
+
|
31 |
+
# Create predict function
|
32 |
+
def predict(img) -> Tuple[Dict, float]:
|
33 |
+
"""Transforms and performs a prediction on img and returns prediction and time taken.
|
34 |
+
"""
|
35 |
+
# Start the timer
|
36 |
+
start_time = timer()
|
37 |
+
|
38 |
+
# Transform the target image and add a batch dimension
|
39 |
+
img = effnetb0_transforms(img).unsqueeze(0)
|
40 |
+
|
41 |
+
# Put model into evaluation mode and turn on inference mode
|
42 |
+
effnetb0.eval()
|
43 |
+
with torch.inference_mode():
|
44 |
+
# Pass the transformed image through the model and turn the prediction logits into prediction probabilities
|
45 |
+
pred_probs = torch.softmax(effnetb0(img), dim=1)
|
46 |
+
|
47 |
+
# Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
|
48 |
+
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
|
49 |
+
|
50 |
+
# Calculate the prediction time
|
51 |
+
pred_time = round(timer() - start_time, 5)
|
52 |
+
|
53 |
+
# Return the prediction dictionary and prediction time
|
54 |
+
return pred_labels_and_probs, pred_time
|
55 |
+
|
56 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
57 |
+
|
58 |
+
### 4. Gradio app ###
|
59 |
+
|
60 |
+
# Create title, description and article strings
|
61 |
+
title = "Emotion Detection App 😀😐😰😞🤢😲😡"
|
62 |
+
description = "An EfficientNetB0 computer vision model to classify images of emotions: Happy, Neutral, Sad, fearful, Angry, Suprised, Disgusted."
|
63 |
+
article = "Reference: [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
|
64 |
+
|
65 |
+
import gradio as gr
|
66 |
+
|
67 |
+
demo = gr.Interface(fn=predict, # mapping function from input to output
|
68 |
+
inputs=gr.Image(type="pil"), # what are the inputs?
|
69 |
+
outputs=[gr.Label(num_top_classes=7, label="Predictions"), # what are the outputs?
|
70 |
+
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
|
71 |
+
# Create examples list from "examples/" directory
|
72 |
+
examples=example_list,
|
73 |
+
title=title,
|
74 |
+
description=description,
|
75 |
+
article=article).launch()
|
76 |
+
|
examples/im175.png
ADDED
examples/im867.png
ADDED
examples/im90.png
ADDED
facial-detection.ipynb
ADDED
@@ -0,0 +1,524 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {
|
7 |
+
"_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
|
8 |
+
"_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5"
|
9 |
+
},
|
10 |
+
"outputs": [],
|
11 |
+
"source": [
|
12 |
+
"\n",
|
13 |
+
"import numpy as np \n",
|
14 |
+
"import pandas as pd \n",
|
15 |
+
"import cv2\n",
|
16 |
+
"\n"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": null,
|
22 |
+
"metadata": {
|
23 |
+
"_cell_guid": "79c7e3d0-c299-4dcb-8224-4455121ee9b0",
|
24 |
+
"_uuid": "d629ff2d2480ee46fbb7e2d37f6b5fab8052498a"
|
25 |
+
},
|
26 |
+
"outputs": [],
|
27 |
+
"source": [
|
28 |
+
"df = pd.read_csv('../input/facial-expression/fer2013.csv')"
|
29 |
+
]
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"cell_type": "code",
|
33 |
+
"execution_count": null,
|
34 |
+
"metadata": {},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"df.head()"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "code",
|
42 |
+
"execution_count": null,
|
43 |
+
"metadata": {},
|
44 |
+
"outputs": [],
|
45 |
+
"source": [
|
46 |
+
"len(df.iloc[0]['pixels'].split())\n",
|
47 |
+
"# 48 * 48"
|
48 |
+
]
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"cell_type": "code",
|
52 |
+
"execution_count": null,
|
53 |
+
"metadata": {},
|
54 |
+
"outputs": [],
|
55 |
+
"source": [
|
56 |
+
"label_map = ['Anger', 'Neutral', 'Fear', 'Happy', 'Sad', 'Surprise']"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"execution_count": null,
|
62 |
+
"metadata": {},
|
63 |
+
"outputs": [],
|
64 |
+
"source": [
|
65 |
+
"import matplotlib.pyplot as plt"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": null,
|
71 |
+
"metadata": {},
|
72 |
+
"outputs": [],
|
73 |
+
"source": [
|
74 |
+
"img = df.iloc[0]['pixels'].split()"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"execution_count": null,
|
80 |
+
"metadata": {},
|
81 |
+
"outputs": [],
|
82 |
+
"source": [
|
83 |
+
"img = [int(i) for i in img]"
|
84 |
+
]
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"cell_type": "code",
|
88 |
+
"execution_count": null,
|
89 |
+
"metadata": {},
|
90 |
+
"outputs": [],
|
91 |
+
"source": [
|
92 |
+
"type(img[0])"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "code",
|
97 |
+
"execution_count": null,
|
98 |
+
"metadata": {},
|
99 |
+
"outputs": [],
|
100 |
+
"source": [
|
101 |
+
"len(img)"
|
102 |
+
]
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"cell_type": "code",
|
106 |
+
"execution_count": null,
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [],
|
109 |
+
"source": [
|
110 |
+
"img = np.array(img)"
|
111 |
+
]
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "code",
|
115 |
+
"execution_count": null,
|
116 |
+
"metadata": {},
|
117 |
+
"outputs": [],
|
118 |
+
"source": [
|
119 |
+
"img = img.reshape(48,48)"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"cell_type": "code",
|
124 |
+
"execution_count": null,
|
125 |
+
"metadata": {},
|
126 |
+
"outputs": [],
|
127 |
+
"source": [
|
128 |
+
"img.shape"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"cell_type": "code",
|
133 |
+
"execution_count": null,
|
134 |
+
"metadata": {},
|
135 |
+
"outputs": [],
|
136 |
+
"source": [
|
137 |
+
"plt.imshow(img, cmap='gray')\n",
|
138 |
+
"plt.xlabel(df.iloc[0]['emotion'])"
|
139 |
+
]
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"cell_type": "code",
|
143 |
+
"execution_count": null,
|
144 |
+
"metadata": {},
|
145 |
+
"outputs": [],
|
146 |
+
"source": [
|
147 |
+
"X = []\n",
|
148 |
+
"y = []"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"cell_type": "code",
|
153 |
+
"execution_count": null,
|
154 |
+
"metadata": {},
|
155 |
+
"outputs": [],
|
156 |
+
"source": [
|
157 |
+
"def getData(path):\n",
|
158 |
+
" anger = 0\n",
|
159 |
+
" fear = 0\n",
|
160 |
+
" sad = 0\n",
|
161 |
+
" happy = 0\n",
|
162 |
+
" surprise = 0\n",
|
163 |
+
" neutral = 0\n",
|
164 |
+
" df = pd.read_csv(path)\n",
|
165 |
+
" \n",
|
166 |
+
" X = []\n",
|
167 |
+
" y = [] \n",
|
168 |
+
" \n",
|
169 |
+
" for i in range(len(df)):\n",
|
170 |
+
" if df.iloc[i]['emotion'] != 1:\n",
|
171 |
+
" if df.iloc[i]['emotion'] == 0:\n",
|
172 |
+
" if anger <= 4000: \n",
|
173 |
+
" y.append(df.iloc[i]['emotion'])\n",
|
174 |
+
" im = df.iloc[i]['pixels']\n",
|
175 |
+
" im = [int(x) for x in im.split()]\n",
|
176 |
+
" X.append(im)\n",
|
177 |
+
" anger += 1\n",
|
178 |
+
" else:\n",
|
179 |
+
" pass\n",
|
180 |
+
" \n",
|
181 |
+
" if df.iloc[i]['emotion'] == 2:\n",
|
182 |
+
" if fear <= 4000: \n",
|
183 |
+
" y.append(df.iloc[i]['emotion'])\n",
|
184 |
+
" im = df.iloc[i]['pixels']\n",
|
185 |
+
" im = [int(x) for x in im.split()]\n",
|
186 |
+
" X.append(im)\n",
|
187 |
+
" fear += 1\n",
|
188 |
+
" else:\n",
|
189 |
+
" pass\n",
|
190 |
+
" \n",
|
191 |
+
" if df.iloc[i]['emotion'] == 3:\n",
|
192 |
+
" if happy <= 4000: \n",
|
193 |
+
" y.append(df.iloc[i]['emotion'])\n",
|
194 |
+
" im = df.iloc[i]['pixels']\n",
|
195 |
+
" im = [int(x) for x in im.split()]\n",
|
196 |
+
" X.append(im)\n",
|
197 |
+
" happy += 1\n",
|
198 |
+
" else:\n",
|
199 |
+
" pass\n",
|
200 |
+
" \n",
|
201 |
+
" if df.iloc[i]['emotion'] == 4:\n",
|
202 |
+
" if sad <= 4000: \n",
|
203 |
+
" y.append(df.iloc[i]['emotion'])\n",
|
204 |
+
" im = df.iloc[i]['pixels']\n",
|
205 |
+
" im = [int(x) for x in im.split()]\n",
|
206 |
+
" X.append(im)\n",
|
207 |
+
" sad += 1\n",
|
208 |
+
" else:\n",
|
209 |
+
" pass\n",
|
210 |
+
" \n",
|
211 |
+
" if df.iloc[i]['emotion'] == 5:\n",
|
212 |
+
" if surprise <= 4000: \n",
|
213 |
+
" y.append(df.iloc[i]['emotion'])\n",
|
214 |
+
" im = df.iloc[i]['pixels']\n",
|
215 |
+
" im = [int(x) for x in im.split()]\n",
|
216 |
+
" X.append(im)\n",
|
217 |
+
" surprise += 1\n",
|
218 |
+
" else:\n",
|
219 |
+
" pass\n",
|
220 |
+
" \n",
|
221 |
+
" if df.iloc[i]['emotion'] == 6:\n",
|
222 |
+
" if neutral <= 4000: \n",
|
223 |
+
" y.append(df.iloc[i]['emotion'])\n",
|
224 |
+
" im = df.iloc[i]['pixels']\n",
|
225 |
+
" im = [int(x) for x in im.split()]\n",
|
226 |
+
" X.append(im)\n",
|
227 |
+
" neutral += 1\n",
|
228 |
+
" else:\n",
|
229 |
+
" pass\n",
|
230 |
+
"\n",
|
231 |
+
" \n",
|
232 |
+
" \n",
|
233 |
+
" return X, y \n",
|
234 |
+
" "
|
235 |
+
]
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"cell_type": "code",
|
239 |
+
"execution_count": null,
|
240 |
+
"metadata": {},
|
241 |
+
"outputs": [],
|
242 |
+
"source": [
|
243 |
+
"X, y = getData('../input/facial-expression/fer2013.csv')"
|
244 |
+
]
|
245 |
+
},
|
246 |
+
{
|
247 |
+
"cell_type": "code",
|
248 |
+
"execution_count": null,
|
249 |
+
"metadata": {},
|
250 |
+
"outputs": [],
|
251 |
+
"source": [
|
252 |
+
"np.unique(y, return_counts=True)"
|
253 |
+
]
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"cell_type": "code",
|
257 |
+
"execution_count": null,
|
258 |
+
"metadata": {},
|
259 |
+
"outputs": [],
|
260 |
+
"source": [
|
261 |
+
"X = np.array(X)/255.0\n",
|
262 |
+
"y = np.array(y)"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"cell_type": "code",
|
267 |
+
"execution_count": null,
|
268 |
+
"metadata": {},
|
269 |
+
"outputs": [],
|
270 |
+
"source": [
|
271 |
+
"X.shape, y.shape"
|
272 |
+
]
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"cell_type": "code",
|
276 |
+
"execution_count": null,
|
277 |
+
"metadata": {},
|
278 |
+
"outputs": [],
|
279 |
+
"source": [
|
280 |
+
"y_o = []\n",
|
281 |
+
"for i in y:\n",
|
282 |
+
" if i != 6:\n",
|
283 |
+
" y_o.append(i)\n",
|
284 |
+
" \n",
|
285 |
+
" else:\n",
|
286 |
+
" y_o.append(1)"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "code",
|
291 |
+
"execution_count": null,
|
292 |
+
"metadata": {},
|
293 |
+
"outputs": [],
|
294 |
+
"source": [
|
295 |
+
"np.unique(y_o, return_counts=True)"
|
296 |
+
]
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"cell_type": "code",
|
300 |
+
"execution_count": null,
|
301 |
+
"metadata": {},
|
302 |
+
"outputs": [],
|
303 |
+
"source": [
|
304 |
+
"for i in range(5):\n",
|
305 |
+
" r = np.random.randint((1), 24000, 1)[0]\n",
|
306 |
+
" plt.figure()\n",
|
307 |
+
" plt.imshow(X[r].reshape(48,48), cmap='gray')\n",
|
308 |
+
" plt.xlabel(label_map[y_o[r]])"
|
309 |
+
]
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"cell_type": "code",
|
313 |
+
"execution_count": null,
|
314 |
+
"metadata": {},
|
315 |
+
"outputs": [],
|
316 |
+
"source": [
|
317 |
+
"X = X.reshape(len(X), 48, 48, 1)"
|
318 |
+
]
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"cell_type": "code",
|
322 |
+
"execution_count": null,
|
323 |
+
"metadata": {},
|
324 |
+
"outputs": [],
|
325 |
+
"source": [
|
326 |
+
"# no_of_images, height, width, coloar_map"
|
327 |
+
]
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"cell_type": "code",
|
331 |
+
"execution_count": null,
|
332 |
+
"metadata": {},
|
333 |
+
"outputs": [],
|
334 |
+
"source": [
|
335 |
+
"X.shape"
|
336 |
+
]
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"cell_type": "code",
|
340 |
+
"execution_count": null,
|
341 |
+
"metadata": {},
|
342 |
+
"outputs": [],
|
343 |
+
"source": [
|
344 |
+
"from keras.utils import to_categorical\n",
|
345 |
+
"y_new = to_categorical(y_o, num_classes=6)"
|
346 |
+
]
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"cell_type": "code",
|
350 |
+
"execution_count": null,
|
351 |
+
"metadata": {},
|
352 |
+
"outputs": [],
|
353 |
+
"source": [
|
354 |
+
"len(y_o), y_new.shape"
|
355 |
+
]
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"cell_type": "code",
|
359 |
+
"execution_count": null,
|
360 |
+
"metadata": {},
|
361 |
+
"outputs": [],
|
362 |
+
"source": [
|
363 |
+
"y_o[150], y_new[150]"
|
364 |
+
]
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"cell_type": "code",
|
368 |
+
"execution_count": null,
|
369 |
+
"metadata": {},
|
370 |
+
"outputs": [],
|
371 |
+
"source": [
|
372 |
+
"from keras.models import Sequential\n",
|
373 |
+
"from keras.layers import Dense , Activation , Dropout ,Flatten\n",
|
374 |
+
"from keras.layers.convolutional import Conv2D\n",
|
375 |
+
"from keras.layers.convolutional import MaxPooling2D\n",
|
376 |
+
"from keras.metrics import categorical_accuracy\n",
|
377 |
+
"from keras.models import model_from_json\n",
|
378 |
+
"from keras.callbacks import ModelCheckpoint\n",
|
379 |
+
"from keras.optimizers import *\n",
|
380 |
+
"from keras.layers.normalization import BatchNormalization"
|
381 |
+
]
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"cell_type": "code",
|
385 |
+
"execution_count": null,
|
386 |
+
"metadata": {},
|
387 |
+
"outputs": [],
|
388 |
+
"source": [
|
389 |
+
"model = Sequential()\n",
|
390 |
+
"\n",
|
391 |
+
"\n",
|
392 |
+
"input_shape = (48,48,1)\n",
|
393 |
+
"\n",
|
394 |
+
"\n",
|
395 |
+
"model.add(Conv2D(64, (5, 5), input_shape=input_shape,activation='relu', padding='same'))\n",
|
396 |
+
"model.add(Conv2D(64, (5, 5), padding='same'))\n",
|
397 |
+
"model.add(BatchNormalization())\n",
|
398 |
+
"model.add(Activation('relu'))\n",
|
399 |
+
"model.add(MaxPooling2D(pool_size=(2, 2)))\n",
|
400 |
+
"\n",
|
401 |
+
"\n",
|
402 |
+
"model.add(Conv2D(128, (5, 5),activation='relu',padding='same'))\n",
|
403 |
+
"model.add(Conv2D(128, (5, 5),padding='same'))\n",
|
404 |
+
"model.add(BatchNormalization())\n",
|
405 |
+
"model.add(Activation('relu'))\n",
|
406 |
+
"model.add(MaxPooling2D(pool_size=(2, 2)))\n",
|
407 |
+
"\n",
|
408 |
+
"model.add(Conv2D(256, (3, 3),activation='relu',padding='same'))\n",
|
409 |
+
"model.add(Conv2D(256, (3, 3),activation='relu',padding='same'))\n",
|
410 |
+
"model.add(BatchNormalization())\n",
|
411 |
+
"model.add(MaxPooling2D(pool_size=(2, 2)))\n",
|
412 |
+
"\n",
|
413 |
+
"## (15, 15) ---> 30\n",
|
414 |
+
"model.add(Flatten())\n",
|
415 |
+
"model.add(Dense(6, activation='softmax'))\n",
|
416 |
+
"\n",
|
417 |
+
"model.compile(loss='categorical_crossentropy', metrics=['accuracy'],optimizer='adam')"
|
418 |
+
]
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"cell_type": "code",
|
422 |
+
"execution_count": null,
|
423 |
+
"metadata": {},
|
424 |
+
"outputs": [],
|
425 |
+
"source": [
|
426 |
+
"model.fit(X, y_new, epochs=22, batch_size=64, shuffle=True, validation_split=0.2)"
|
427 |
+
]
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"cell_type": "code",
|
431 |
+
"execution_count": null,
|
432 |
+
"metadata": {},
|
433 |
+
"outputs": [],
|
434 |
+
"source": [
|
435 |
+
"model.save('model.h5')"
|
436 |
+
]
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"cell_type": "code",
|
440 |
+
"execution_count": null,
|
441 |
+
"metadata": {},
|
442 |
+
"outputs": [],
|
443 |
+
"source": [
|
444 |
+
"import cv2"
|
445 |
+
]
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"cell_type": "code",
|
449 |
+
"execution_count": null,
|
450 |
+
"metadata": {},
|
451 |
+
"outputs": [],
|
452 |
+
"source": [
|
453 |
+
"test_img = cv2.imread('../input/happy-img-test/pexels-andrea-piacquadio-941693.jpg', 0)"
|
454 |
+
]
|
455 |
+
},
|
456 |
+
{
|
457 |
+
"cell_type": "code",
|
458 |
+
"execution_count": null,
|
459 |
+
"metadata": {},
|
460 |
+
"outputs": [],
|
461 |
+
"source": [
|
462 |
+
"test_img.shape"
|
463 |
+
]
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"cell_type": "code",
|
467 |
+
"execution_count": null,
|
468 |
+
"metadata": {},
|
469 |
+
"outputs": [],
|
470 |
+
"source": [
|
471 |
+
"test_img = cv2.resize(test_img, (48,48))\n",
|
472 |
+
"test_img.shape"
|
473 |
+
]
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"cell_type": "code",
|
477 |
+
"execution_count": null,
|
478 |
+
"metadata": {},
|
479 |
+
"outputs": [],
|
480 |
+
"source": [
|
481 |
+
"test_img = test_img.reshape(1,48,48,1)"
|
482 |
+
]
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"cell_type": "code",
|
486 |
+
"execution_count": null,
|
487 |
+
"metadata": {},
|
488 |
+
"outputs": [],
|
489 |
+
"source": [
|
490 |
+
"model.predict(test_img)"
|
491 |
+
]
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"cell_type": "code",
|
495 |
+
"execution_count": null,
|
496 |
+
"metadata": {},
|
497 |
+
"outputs": [],
|
498 |
+
"source": [
|
499 |
+
"# label_map = ['Anger', 'Neutral', 'Fear', 'Happy', 'Sad', 'Surprise']"
|
500 |
+
]
|
501 |
+
}
|
502 |
+
],
|
503 |
+
"metadata": {
|
504 |
+
"kernelspec": {
|
505 |
+
"display_name": "Python 3",
|
506 |
+
"language": "python",
|
507 |
+
"name": "python3"
|
508 |
+
},
|
509 |
+
"language_info": {
|
510 |
+
"codemirror_mode": {
|
511 |
+
"name": "ipython",
|
512 |
+
"version": 3
|
513 |
+
},
|
514 |
+
"file_extension": ".py",
|
515 |
+
"mimetype": "text/x-python",
|
516 |
+
"name": "python",
|
517 |
+
"nbconvert_exporter": "python",
|
518 |
+
"pygments_lexer": "ipython3",
|
519 |
+
"version": "3.8.3"
|
520 |
+
}
|
521 |
+
},
|
522 |
+
"nbformat": 4,
|
523 |
+
"nbformat_minor": 4
|
524 |
+
}
|
facial-detection.py
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[ ]:
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import pandas as pd
|
10 |
+
import cv2
|
11 |
+
|
12 |
+
|
13 |
+
# In[ ]:
|
14 |
+
|
15 |
+
|
16 |
+
df = pd.read_csv('../input/facial-expression/fer2013.csv')
|
17 |
+
|
18 |
+
|
19 |
+
# In[ ]:
|
20 |
+
|
21 |
+
|
22 |
+
df.head()
|
23 |
+
|
24 |
+
|
25 |
+
# In[ ]:
|
26 |
+
|
27 |
+
|
28 |
+
len(df.iloc[0]['pixels'].split())
|
29 |
+
# 48 * 48
|
30 |
+
|
31 |
+
|
32 |
+
# In[ ]:
|
33 |
+
|
34 |
+
|
35 |
+
label_map = ['Anger', 'Neutral', 'Fear', 'Happy', 'Sad', 'Surprise']
|
36 |
+
|
37 |
+
|
38 |
+
# In[ ]:
|
39 |
+
|
40 |
+
|
41 |
+
import matplotlib.pyplot as plt
|
42 |
+
|
43 |
+
|
44 |
+
# In[ ]:
|
45 |
+
|
46 |
+
|
47 |
+
img = df.iloc[0]['pixels'].split()
|
48 |
+
|
49 |
+
|
50 |
+
# In[ ]:
|
51 |
+
|
52 |
+
|
53 |
+
img = [int(i) for i in img]
|
54 |
+
|
55 |
+
|
56 |
+
# In[ ]:
|
57 |
+
|
58 |
+
|
59 |
+
type(img[0])
|
60 |
+
|
61 |
+
|
62 |
+
# In[ ]:
|
63 |
+
|
64 |
+
|
65 |
+
len(img)
|
66 |
+
|
67 |
+
|
68 |
+
# In[ ]:
|
69 |
+
|
70 |
+
|
71 |
+
img = np.array(img)
|
72 |
+
|
73 |
+
|
74 |
+
# In[ ]:
|
75 |
+
|
76 |
+
|
77 |
+
img = img.reshape(48,48)
|
78 |
+
|
79 |
+
|
80 |
+
# In[ ]:
|
81 |
+
|
82 |
+
|
83 |
+
img.shape
|
84 |
+
|
85 |
+
|
86 |
+
# In[ ]:
|
87 |
+
|
88 |
+
|
89 |
+
plt.imshow(img, cmap='gray')
|
90 |
+
plt.xlabel(df.iloc[0]['emotion'])
|
91 |
+
|
92 |
+
|
93 |
+
# In[ ]:
|
94 |
+
|
95 |
+
|
96 |
+
X = []
|
97 |
+
y = []
|
98 |
+
|
99 |
+
|
100 |
+
# In[ ]:
|
101 |
+
|
102 |
+
|
103 |
+
def getData(path):
|
104 |
+
anger = 0
|
105 |
+
fear = 0
|
106 |
+
sad = 0
|
107 |
+
happy = 0
|
108 |
+
surprise = 0
|
109 |
+
neutral = 0
|
110 |
+
df = pd.read_csv(path)
|
111 |
+
|
112 |
+
X = []
|
113 |
+
y = []
|
114 |
+
|
115 |
+
for i in range(len(df)):
|
116 |
+
if df.iloc[i]['emotion'] != 1:
|
117 |
+
if df.iloc[i]['emotion'] == 0:
|
118 |
+
if anger <= 4000:
|
119 |
+
y.append(df.iloc[i]['emotion'])
|
120 |
+
im = df.iloc[i]['pixels']
|
121 |
+
im = [int(x) for x in im.split()]
|
122 |
+
X.append(im)
|
123 |
+
anger += 1
|
124 |
+
else:
|
125 |
+
pass
|
126 |
+
|
127 |
+
if df.iloc[i]['emotion'] == 2:
|
128 |
+
if fear <= 4000:
|
129 |
+
y.append(df.iloc[i]['emotion'])
|
130 |
+
im = df.iloc[i]['pixels']
|
131 |
+
im = [int(x) for x in im.split()]
|
132 |
+
X.append(im)
|
133 |
+
fear += 1
|
134 |
+
else:
|
135 |
+
pass
|
136 |
+
|
137 |
+
if df.iloc[i]['emotion'] == 3:
|
138 |
+
if happy <= 4000:
|
139 |
+
y.append(df.iloc[i]['emotion'])
|
140 |
+
im = df.iloc[i]['pixels']
|
141 |
+
im = [int(x) for x in im.split()]
|
142 |
+
X.append(im)
|
143 |
+
happy += 1
|
144 |
+
else:
|
145 |
+
pass
|
146 |
+
|
147 |
+
if df.iloc[i]['emotion'] == 4:
|
148 |
+
if sad <= 4000:
|
149 |
+
y.append(df.iloc[i]['emotion'])
|
150 |
+
im = df.iloc[i]['pixels']
|
151 |
+
im = [int(x) for x in im.split()]
|
152 |
+
X.append(im)
|
153 |
+
sad += 1
|
154 |
+
else:
|
155 |
+
pass
|
156 |
+
|
157 |
+
if df.iloc[i]['emotion'] == 5:
|
158 |
+
if surprise <= 4000:
|
159 |
+
y.append(df.iloc[i]['emotion'])
|
160 |
+
im = df.iloc[i]['pixels']
|
161 |
+
im = [int(x) for x in im.split()]
|
162 |
+
X.append(im)
|
163 |
+
surprise += 1
|
164 |
+
else:
|
165 |
+
pass
|
166 |
+
|
167 |
+
if df.iloc[i]['emotion'] == 6:
|
168 |
+
if neutral <= 4000:
|
169 |
+
y.append(df.iloc[i]['emotion'])
|
170 |
+
im = df.iloc[i]['pixels']
|
171 |
+
im = [int(x) for x in im.split()]
|
172 |
+
X.append(im)
|
173 |
+
neutral += 1
|
174 |
+
else:
|
175 |
+
pass
|
176 |
+
|
177 |
+
|
178 |
+
|
179 |
+
return X, y
|
180 |
+
|
181 |
+
|
182 |
+
|
183 |
+
# In[ ]:
|
184 |
+
|
185 |
+
|
186 |
+
X, y = getData('../input/facial-expression/fer2013.csv')
|
187 |
+
|
188 |
+
|
189 |
+
# In[ ]:
|
190 |
+
|
191 |
+
|
192 |
+
np.unique(y, return_counts=True)
|
193 |
+
|
194 |
+
|
195 |
+
# In[ ]:
|
196 |
+
|
197 |
+
|
198 |
+
X = np.array(X)/255.0
|
199 |
+
y = np.array(y)
|
200 |
+
|
201 |
+
|
202 |
+
# In[ ]:
|
203 |
+
|
204 |
+
|
205 |
+
X.shape, y.shape
|
206 |
+
|
207 |
+
|
208 |
+
# In[ ]:
|
209 |
+
|
210 |
+
|
211 |
+
y_o = []
|
212 |
+
for i in y:
|
213 |
+
if i != 6:
|
214 |
+
y_o.append(i)
|
215 |
+
|
216 |
+
else:
|
217 |
+
y_o.append(1)
|
218 |
+
|
219 |
+
|
220 |
+
# In[ ]:
|
221 |
+
|
222 |
+
|
223 |
+
np.unique(y_o, return_counts=True)
|
224 |
+
|
225 |
+
|
226 |
+
# In[ ]:
|
227 |
+
|
228 |
+
|
229 |
+
for i in range(5):
|
230 |
+
r = np.random.randint((1), 24000, 1)[0]
|
231 |
+
plt.figure()
|
232 |
+
plt.imshow(X[r].reshape(48,48), cmap='gray')
|
233 |
+
plt.xlabel(label_map[y_o[r]])
|
234 |
+
|
235 |
+
|
236 |
+
# In[ ]:
|
237 |
+
|
238 |
+
|
239 |
+
X = X.reshape(len(X), 48, 48, 1)
|
240 |
+
|
241 |
+
|
242 |
+
# In[ ]:
|
243 |
+
|
244 |
+
|
245 |
+
# no_of_images, height, width, coloar_map
|
246 |
+
|
247 |
+
|
248 |
+
# In[ ]:
|
249 |
+
|
250 |
+
|
251 |
+
X.shape
|
252 |
+
|
253 |
+
|
254 |
+
# In[ ]:
|
255 |
+
|
256 |
+
|
257 |
+
from keras.utils import to_categorical
|
258 |
+
y_new = to_categorical(y_o, num_classes=6)
|
259 |
+
|
260 |
+
|
261 |
+
# In[ ]:
|
262 |
+
|
263 |
+
|
264 |
+
len(y_o), y_new.shape
|
265 |
+
|
266 |
+
|
267 |
+
# In[ ]:
|
268 |
+
|
269 |
+
|
270 |
+
y_o[150], y_new[150]
|
271 |
+
|
272 |
+
|
273 |
+
# In[ ]:
|
274 |
+
|
275 |
+
|
276 |
+
from keras.models import Sequential
|
277 |
+
from keras.layers import Dense , Activation , Dropout ,Flatten
|
278 |
+
from keras.layers.convolutional import Conv2D
|
279 |
+
from keras.layers.convolutional import MaxPooling2D
|
280 |
+
from keras.metrics import categorical_accuracy
|
281 |
+
from keras.models import model_from_json
|
282 |
+
from keras.callbacks import ModelCheckpoint
|
283 |
+
from keras.optimizers import *
|
284 |
+
from keras.layers.normalization import BatchNormalization
|
285 |
+
|
286 |
+
|
287 |
+
# In[ ]:
|
288 |
+
|
289 |
+
|
290 |
+
model = Sequential()
|
291 |
+
|
292 |
+
|
293 |
+
input_shape = (48,48,1)
|
294 |
+
|
295 |
+
|
296 |
+
model.add(Conv2D(64, (5, 5), input_shape=input_shape,activation='relu', padding='same'))
|
297 |
+
model.add(Conv2D(64, (5, 5), padding='same'))
|
298 |
+
model.add(BatchNormalization())
|
299 |
+
model.add(Activation('relu'))
|
300 |
+
model.add(MaxPooling2D(pool_size=(2, 2)))
|
301 |
+
|
302 |
+
|
303 |
+
model.add(Conv2D(128, (5, 5),activation='relu',padding='same'))
|
304 |
+
model.add(Conv2D(128, (5, 5),padding='same'))
|
305 |
+
model.add(BatchNormalization())
|
306 |
+
model.add(Activation('relu'))
|
307 |
+
model.add(MaxPooling2D(pool_size=(2, 2)))
|
308 |
+
|
309 |
+
model.add(Conv2D(256, (3, 3),activation='relu',padding='same'))
|
310 |
+
model.add(Conv2D(256, (3, 3),activation='relu',padding='same'))
|
311 |
+
model.add(BatchNormalization())
|
312 |
+
model.add(MaxPooling2D(pool_size=(2, 2)))
|
313 |
+
|
314 |
+
## (15, 15) ---> 30
|
315 |
+
model.add(Flatten())
|
316 |
+
model.add(Dense(6, activation='softmax'))
|
317 |
+
|
318 |
+
model.compile(loss='categorical_crossentropy', metrics=['accuracy'],optimizer='adam')
|
319 |
+
|
320 |
+
|
321 |
+
# In[ ]:
|
322 |
+
|
323 |
+
|
324 |
+
model.fit(X, y_new, epochs=22, batch_size=64, shuffle=True, validation_split=0.2)
|
325 |
+
|
326 |
+
|
327 |
+
# In[ ]:
|
328 |
+
|
329 |
+
|
330 |
+
model.save('model.h5')
|
331 |
+
|
332 |
+
|
333 |
+
# In[ ]:
|
334 |
+
|
335 |
+
|
336 |
+
import cv2
|
337 |
+
|
338 |
+
|
339 |
+
# In[ ]:
|
340 |
+
|
341 |
+
|
342 |
+
test_img = cv2.imread('../input/happy-img-test/pexels-andrea-piacquadio-941693.jpg', 0)
|
343 |
+
|
344 |
+
|
345 |
+
# In[ ]:
|
346 |
+
|
347 |
+
|
348 |
+
test_img.shape
|
349 |
+
|
350 |
+
|
351 |
+
# In[ ]:
|
352 |
+
|
353 |
+
|
354 |
+
test_img = cv2.resize(test_img, (48,48))
|
355 |
+
test_img.shape
|
356 |
+
|
357 |
+
|
358 |
+
# In[ ]:
|
359 |
+
|
360 |
+
|
361 |
+
test_img = test_img.reshape(1,48,48,1)
|
362 |
+
|
363 |
+
|
364 |
+
# In[ ]:
|
365 |
+
|
366 |
+
|
367 |
+
model.predict(test_img)
|
368 |
+
|
369 |
+
|
370 |
+
# In[ ]:
|
371 |
+
|
372 |
+
|
373 |
+
# label_map = ['Anger', 'Neutral', 'Fear', 'Happy', 'Sad', 'Surprise']
|
374 |
+
|
model.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision
|
3 |
+
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
|
7 |
+
def create_effnetb0_model(num_classes:int=7,
|
8 |
+
seed:int=42):
|
9 |
+
"""Creates an EfficientNetB2 feature extractor model and transforms.
|
10 |
+
Args:
|
11 |
+
num_classes (int, optional): number of classes in the classifier head.
|
12 |
+
Defaults to 3.
|
13 |
+
seed (int, optional): random seed value. Defaults to 42.
|
14 |
+
Returns:
|
15 |
+
model (torch.nn.Module): EffNetB2 feature extractor model.
|
16 |
+
transforms (torchvision.transforms): EffNetB2 image transforms.
|
17 |
+
"""
|
18 |
+
# Create EffNetB2 pretrained weights, transforms and model
|
19 |
+
weights = torchvision.models.EfficientNet_B0_Weights.DEFAULT
|
20 |
+
transforms = weights.transforms()
|
21 |
+
model = torchvision.models.efficientnet_b0(weights=weights)
|
22 |
+
|
23 |
+
# Freeze all layers in base model
|
24 |
+
for param in model.parameters():
|
25 |
+
param.requires_grad = False
|
26 |
+
|
27 |
+
# Change classifier head with random seed for reproducibility
|
28 |
+
torch.manual_seed(seed)
|
29 |
+
model.classifier = nn.Sequential(
|
30 |
+
nn.Dropout(p=0.3, inplace=True),
|
31 |
+
nn.Linear(in_features=1280, out_features=num_classes),
|
32 |
+
)
|
33 |
+
|
34 |
+
return model, transforms
|
models/checkpoint.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c19080505a7503bda94d190f212cc15a12e0db73d771e287fce914fb026ec5f8
|
3 |
+
size 16368687
|
models/efficientnet_b0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8e33a3660f4cdf1a53f06867637f080394658f125273225f25eaef7ed6639bb
|
3 |
+
size 16366529
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.13.0
|
2 |
+
torchvision==0.14.0
|
3 |
+
gradio==3.1.4
|
4 |
+
|