test1 / app /models /__init__.py
supArs's picture
Upload 19 files
3afff35 verified
from math import ceil
from torch import cat
from torch.nn import AvgPool3d, BatchNorm3d, Conv3d, Dropout, MaxPool3d, Module
from torch.nn.functional import pad, relu
class MaxPool3dSamePadding(MaxPool3d):
def compute_pad(self, dim, s):
if s % self.stride[dim] == 0:
return max(self.kernel_size[dim] - self.stride[dim], 0)
else:
return max(self.kernel_size[dim] - (s % self.stride[dim]), 0)
def forward(self, x):
# compute 'same' padding
_, _, t, h, w = x.size()
# print t,h,ms.shaw
# out_t = np.ceil(float(t) / float(self.stride[0]))
# out_h = np.ceil(float(h) / float(self.stride[1]))
# out_w = np.ceil(float(w) / float(self.stride[2]))
# print out_t, out_h, out_w
pad_t = self.compute_pad(0, t)
pad_h = self.compute_pad(1, h)
pad_w = self.compute_pad(2, w)
# print pad_t, pad_h, pad_w
pad_t_f = pad_t // 2
pad_t_b = pad_t - pad_t_f
pad_h_f = pad_h // 2
pad_h_b = pad_h - pad_h_f
pad_w_f = pad_w // 2
pad_w_b = pad_w - pad_w_f
padding = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
x = pad(x, padding)
return super(MaxPool3dSamePadding, self).forward(x)
class Unit3D(Module):
def __init__(
self,
in_channels,
output_channels,
kernel_shape=(1, 1, 1),
stride=(1, 1, 1),
padding=0,
activation_fn=relu,
use_batch_norm=True,
use_bias=False,
name="unit_3d",
num_domains=1,
):
"""Initializes Unit3D module."""
super(Unit3D, self).__init__()
self._output_channels = output_channels
self._kernel_shape = kernel_shape
self._stride = stride
self._use_batch_norm = use_batch_norm
self._num_domains = num_domains
self._activation_fn = activation_fn
self._use_bias = use_bias
self.name = name
self.padding = padding
self.conv3d = Conv3d(
in_channels=in_channels,
out_channels=self._output_channels,
kernel_size=self._kernel_shape,
stride=self._stride,
padding=0, # we always want padding to be 0 here. We will dynamically pad based on input size in forward function
bias=self._use_bias,
)
if self._use_batch_norm:
if self._num_domains == 1:
self.bn = BatchNorm3d(self._output_channels, eps=0.001, momentum=0.01)
def compute_pad(self, dim, s):
if s % self._stride[dim] == 0:
return max(self._kernel_shape[dim] - self._stride[dim], 0)
else:
return max(self._kernel_shape[dim] - (s % self._stride[dim]), 0)
def forward(self, x):
# compute 'same' padding
_, _, t, h, w = x.size()
# print t,h,w
# out_t = np.ceil(float(t) / float(self._stride[0]))
# out_h = np.ceil(float(h) / float(self._stride[1]))
# out_w = np.ceil(float(w) / float(self._stride[2]))
# print out_t, out_h, out_w
pad_t = self.compute_pad(0, t)
pad_h = self.compute_pad(1, h)
pad_w = self.compute_pad(2, w)
# print pad_t, pad_h, pad_w
pad_t_f = pad_t // 2
pad_t_b = pad_t - pad_t_f
pad_h_f = pad_h // 2
pad_h_b = pad_h - pad_h_f
pad_w_f = pad_w // 2
pad_w_b = pad_w - pad_w_f
padding = (pad_w_f, pad_w_b, pad_h_f, pad_h_b, pad_t_f, pad_t_b)
# print x.size()
# print pad
x = pad(x, padding)
# print x.size()
x = self.conv3d(x)
if self._use_batch_norm:
x = self.bn(x)
if self._activation_fn is not None:
x = self._activation_fn(x)
return x
class InceptionModule(Module):
def __init__(self, in_channels, out_channels, name, num_domains=1):
super(InceptionModule, self).__init__()
self.b0 = Unit3D(
in_channels=in_channels,
output_channels=out_channels[0],
kernel_shape=[1, 1, 1],
padding=0,
name=name + "/Branch_0/Conv3d_0a_1x1",
)
self.b1a = Unit3D(
in_channels=in_channels,
output_channels=out_channels[1],
kernel_shape=[1, 1, 1],
padding=0,
name=name + "/Branch_1/Conv3d_0a_1x1",
)
self.b1b = Unit3D(
in_channels=out_channels[1],
output_channels=out_channels[2],
kernel_shape=[3, 3, 3],
name=name + "/Branch_1/Conv3d_0b_3x3",
)
self.b2a = Unit3D(
in_channels=in_channels,
output_channels=out_channels[3],
kernel_shape=[1, 1, 1],
padding=0,
name=name + "/Branch_2/Conv3d_0a_1x1",
)
self.b2b = Unit3D(
in_channels=out_channels[3],
output_channels=out_channels[4],
kernel_shape=[3, 3, 3],
name=name + "/Branch_2/Conv3d_0b_3x3",
)
self.b3a = MaxPool3dSamePadding(
kernel_size=[3, 3, 3], stride=(1, 1, 1), padding=0
)
self.b3b = Unit3D(
in_channels=in_channels,
output_channels=out_channels[5],
kernel_shape=[1, 1, 1],
padding=0,
name=name + "/Branch_3/Conv3d_0b_1x1",
)
self.name = name
def forward(self, x):
b0 = self.b0(x)
b1 = self.b1b(self.b1a(x))
b2 = self.b2b(self.b2a(x))
b3 = self.b3b(self.b3a(x))
return cat([b0, b1, b2, b3], dim=1)
class InceptionI3d(Module):
"""Inception-v1 I3D architecture.
The model is introduced in:
Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset
Joao Carreira, Andrew Zisserman
https://arxiv.org/pdf/1705.07750v1.pdf.
See also the Inception architecture, introduced in:
Going deeper with convolutions
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.
http://arxiv.org/pdf/1409.4842v1.pdf.
"""
# Endpoints of the model in order. During construction, all the endpoints up
# to a designated `final_endpoint` are returned in a dictionary as the
# second return value.
VALID_ENDPOINTS = (
"Conv3d_1a_7x7",
"MaxPool3d_2a_3x3",
"Conv3d_2b_1x1",
"Conv3d_2c_3x3",
"MaxPool3d_3a_3x3",
"Mixed_3b",
"Mixed_3c",
"MaxPool3d_4a_3x3",
"Mixed_4b",
"Mixed_4c",
"Mixed_4d",
"Mixed_4e",
"Mixed_4f",
"MaxPool3d_5a_2x2",
"Mixed_5b",
"Mixed_5c",
"Logits",
"Predictions",
)
def __init__(
self,
num_classes=400,
spatiotemporal_squeeze=True,
final_endpoint="Logits",
name="inception_i3d",
in_channels=3,
dropout_keep_prob=0.5,
num_in_frames=64,
include_embds=False,
):
"""Initializes I3D model instance.
Args:
num_classes: The number of outputs in the logit layer (default 400, which
matches the Kinetics dataset).
spatiotemporal_squeeze: Whether to squeeze the 2 spatial and 1 temporal dimensions for the logits
before returning (default True).
final_endpoint: The model contains many possible endpoints.
`final_endpoint` specifies the last endpoint for the model to be built
up to. In addition to the output at `final_endpoint`, all the outputs
at endpoints up to `final_endpoint` will also be returned, in a
dictionary. `final_endpoint` must be one of
InceptionI3d.VALID_ENDPOINTS (default 'Logits').
in_channels: Number of input channels (default 3 for RGB).
dropout_keep_prob: Dropout probability (default 0.5).
name: A string (optional). The name of this module.
num_in_frames: Number of input frames (default 64).
include_embds: Whether to return embeddings (default False).
Raises:
ValueError: if `final_endpoint` is not recognized.
"""
if final_endpoint not in self.VALID_ENDPOINTS:
raise ValueError("Unknown final endpoint %s" % final_endpoint)
super().__init__()
self._num_classes = num_classes
self._spatiotemporal_squeeze = spatiotemporal_squeeze
self._final_endpoint = final_endpoint
self.include_embds = include_embds
self.logits = None
if self._final_endpoint not in self.VALID_ENDPOINTS:
raise ValueError("Unknown final endpoint %s" % self._final_endpoint)
self.end_points = {}
end_point = "Conv3d_1a_7x7"
self.end_points[end_point] = Unit3D(
in_channels=in_channels,
output_channels=64,
kernel_shape=[7, 7, 7],
stride=(2, 2, 2),
padding=(3, 3, 3),
name=name + end_point,
)
if self._final_endpoint == end_point:
return
end_point = "MaxPool3d_2a_3x3"
self.end_points[end_point] = MaxPool3dSamePadding(
kernel_size=[1, 3, 3], stride=(1, 2, 2), padding=0
)
if self._final_endpoint == end_point:
return
end_point = "Conv3d_2b_1x1"
self.end_points[end_point] = Unit3D(
in_channels=64,
output_channels=64,
kernel_shape=[1, 1, 1],
padding=0,
name=name + end_point,
)
if self._final_endpoint == end_point:
return
end_point = "Conv3d_2c_3x3"
self.end_points[end_point] = Unit3D(
in_channels=64,
output_channels=192,
kernel_shape=[3, 3, 3],
padding=1,
name=name + end_point,
)
if self._final_endpoint == end_point:
return
end_point = "MaxPool3d_3a_3x3"
self.end_points[end_point] = MaxPool3dSamePadding(
kernel_size=[1, 3, 3], stride=(1, 2, 2), padding=0
)
if self._final_endpoint == end_point:
return
end_point = "Mixed_3b"
self.end_points[end_point] = InceptionModule(
192, [64, 96, 128, 16, 32, 32], name + end_point,
)
if self._final_endpoint == end_point:
return
end_point = "Mixed_3c"
self.end_points[end_point] = InceptionModule(
256, [128, 128, 192, 32, 96, 64], name + end_point,
)
if self._final_endpoint == end_point:
return
end_point = "MaxPool3d_4a_3x3"
self.end_points[end_point] = MaxPool3dSamePadding(
kernel_size=[3, 3, 3], stride=(2, 2, 2), padding=0
)
if self._final_endpoint == end_point:
return
end_point = "Mixed_4b"
self.end_points[end_point] = InceptionModule(
128 + 192 + 96 + 64, [192, 96, 208, 16, 48, 64], name + end_point,
)
if self._final_endpoint == end_point:
return
end_point = "Mixed_4c"
self.end_points[end_point] = InceptionModule(
192 + 208 + 48 + 64, [160, 112, 224, 24, 64, 64], name + end_point,
)
if self._final_endpoint == end_point:
return
end_point = "Mixed_4d"
self.end_points[end_point] = InceptionModule(
160 + 224 + 64 + 64, [128, 128, 256, 24, 64, 64], name + end_point,
)
if self._final_endpoint == end_point:
return
end_point = "Mixed_4e"
self.end_points[end_point] = InceptionModule(
128 + 256 + 64 + 64, [112, 144, 288, 32, 64, 64], name + end_point,
)
if self._final_endpoint == end_point:
return
end_point = "Mixed_4f"
self.end_points[end_point] = InceptionModule(
112 + 288 + 64 + 64, [256, 160, 320, 32, 128, 128], name + end_point,
)
if self._final_endpoint == end_point:
return
end_point = "MaxPool3d_5a_2x2"
self.end_points[end_point] = MaxPool3dSamePadding(
kernel_size=[2, 2, 2], stride=(2, 2, 2), padding=0
)
if self._final_endpoint == end_point:
return
end_point = "Mixed_5b"
self.end_points[end_point] = InceptionModule(
256 + 320 + 128 + 128, [256, 160, 320, 32, 128, 128], name + end_point,
)
if self._final_endpoint == end_point:
return
end_point = "Mixed_5c"
self.end_points[end_point] = InceptionModule(
256 + 320 + 128 + 128, [384, 192, 384, 48, 128, 128], name + end_point,
)
if self._final_endpoint == end_point:
return
end_point = "Logits"
last_duration = int(ceil(num_in_frames / 8)) # 8
last_size = 7 # int(ceil(sample_width / 32)) # this is for 224
self.avgpool = AvgPool3d((last_duration, last_size, last_size), stride=1)
self.dropout = Dropout(dropout_keep_prob)
self.logits = Unit3D(
in_channels=384 + 384 + 128 + 128,
output_channels=self._num_classes,
kernel_shape=[1, 1, 1],
padding=0,
activation_fn=None,
use_batch_norm=False,
use_bias=True,
name="logits",
)
self.build()
def replace_logits(self, num_classes):
self._num_classes = num_classes
self.logits = Unit3D(
in_channels=384 + 384 + 128 + 128,
output_channels=self._num_classes,
kernel_shape=[1, 1, 1],
padding=0,
activation_fn=None,
use_batch_norm=False,
use_bias=True,
name="logits",
)
def build(self):
for k in self.end_points.keys():
self.add_module(k, self.end_points[k])
def forward(self, x):
for end_point in self.VALID_ENDPOINTS:
if end_point in self.end_points:
x = self._modules[end_point](x)
# [batch x featuredim x 1 x 1 x 1]
embds = self.dropout(self.avgpool(x))
# [batch x classes x 1 x 1 x 1]
x = self.logits(embds)
if self._spatiotemporal_squeeze:
# [batch x classes]
logits = x.squeeze(3).squeeze(3).squeeze(2)
# logits [batch X classes]
if self.include_embds:
return {"logits": logits, "embds": embds}
else:
return {"logits": logits}