File size: 11,701 Bytes
7100756
534863f
 
 
7100756
534863f
7100756
 
 
 
 
 
 
 
 
 
 
534863f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7100756
534863f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7100756
534863f
7100756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a10510
7100756
 
 
 
534863f
7100756
 
534863f
7100756
534863f
7100756
 
 
 
534863f
7100756
534863f
7100756
 
 
534863f
7100756
 
 
 
 
534863f
7100756
 
534863f
7100756
 
 
 
 
534863f
7100756
 
 
 
 
 
 
 
 
 
 
534863f
7100756
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from scripts.db_util import fetch_db_rows_as_dicts, fetchTopologies
import google.generativeai as genai
import json
import os
from dotenv import load_dotenv, dotenv_values 
import pandas as pd
import math

load_dotenv()

demographicsDict ={
    'CharlesTown': {
        'demographic':'CharlesTown city people are Living for today people mostly with a population of 10000. Out of this 65% are between the age of 18-25.',
        'population': 10000},
    'Limburg': {'demographic':'Limburg city people are young families people mostly with a population of 20000. Out of this 65% are between the age of 30-45. Most of them have kids aged between 0-15',
                'population': 20000}
}

GOOGLE_API_KEY= os.getenv('GEMINI_API_KEY')
genai.configure(api_key=GOOGLE_API_KEY)
model = genai.GenerativeModel(model_name = "gemini-pro")
DB_LOCATION = 'data.sqlite'

def load_json_from_string(json_string):
    try:
        data = json.loads(json_string)
        return data
    except json.JSONDecodeError as e:
        print(f"Error decoding JSON: {e}")
    except Exception as e:
        print(f"An error occurred: {e}")

def concatenate_keys(keys):
    concatenated_string = ""
    for i, d in enumerate(keys, start=1):
        concatenated_string += f"{i}. {d}"
    print('##########################')
    print(concatenated_string.strip())
    return concatenated_string.strip()

def transform_to_dict_of_dicts(columns, rows):
    # Initialize the result dictionary
    result = {}

    # Iterate over each row
    for row in rows:
        #print(dict(row))
        # The first element of the row is the key for the outer dictionary
        outer_key = row[0].strip()
        
        # Initialize the inner dictionary
        inner_dict = {}
        
        # Iterate over the rest of the elements in the row
        for i, value in enumerate(row[1:], start=1):
            # The corresponding column name is the key for the inner dictionary
            inner_key = columns[i].strip()
            # Add the key-value pair to the inner dictionary
            inner_dict[inner_key] = value
        
        # Add the inner dictionary to the result dictionary with the outer key
        result[outer_key] = inner_dict

    return result


def transform_topologies_to_dict(columns, rows):
    # Initialize the result dictionary
    result = {}

    # Iterate over each row
    for row in rows:
        #print(dict(row))
        # The first element of the row is the key for the outer dictionary
        outer_key = row[0].strip()
        
        # Initialize the inner dictionary
        inner_dict = {}
        
        # Iterate over the rest of the elements in the row
        for i, value in enumerate(row[1:], start=1):
            # The corresponding column name is the key for the inner dictionary
            inner_key = columns[i].strip()
            # Add the key-value pair to the inner dictionary
            inner_dict[inner_key] = value
        
        # Add the inner dictionary to the result dictionary with the outer key
        result[outer_key] = inner_dict

    return result

def listNeeds(tableName, dbName=DB_LOCATION):
    needs, rows = fetch_db_rows_as_dicts(dbName, tableName)
    needsDict = transform_to_dict_of_dicts(needs, rows)
    return list(needsDict.keys()), needsDict

def findTop3MoneyNeeds(proposition):
    moneyNeeds, rows = fetch_db_rows_as_dicts(DB_LOCATION, 'money_needs')
    moneyNeedsDict = transform_to_dict_of_dicts(moneyNeeds, rows)
    #print(list(moneyNeedsDict.keys()))
    needs = findTop3Needs(proposition, list(moneyNeedsDict.keys()))
    needDictIndexes = []
    for need in needs:
        needDictIndexes.append(moneyNeedsDict[need])

    #print(needDictIndexes)
    return needs, needDictIndexes

def findTop3CustomerExperienceNeeds(proposition):
    moneyNeeds, rows = fetch_db_rows_as_dicts(DB_LOCATION, 'customer_exp')
    moneyNeedsDict = transform_to_dict_of_dicts(moneyNeeds, rows)
    #print(list(moneyNeedsDict.keys()))
    needs = findTop3Needs(proposition, list(moneyNeedsDict.keys()))
    needDictIndexes = []
    for need in needs:
        needDictIndexes.append(moneyNeedsDict[need])

    #print(needDictIndexes)
    return needs, needDictIndexes


def findTop3SustainabilityNeeds(proposition):
    print(" Proposition sustain  = {}".format(proposition))
    allNeeds, rows = fetch_db_rows_as_dicts(DB_LOCATION, 'sustainability')
    needsDict = transform_to_dict_of_dicts(allNeeds, rows)
    
    needs = findTop3Needs(proposition, list(needsDict.keys()))
    needDictIndexes = []
    print(list(needsDict.keys()))
    for need in needs:
        needDictIndexes.append(needsDict[need])

    print(needDictIndexes)
    return needs, needDictIndexes


def findTop3Needs(proposition, needs):
    
    needsString = concatenate_keys(needs)

    prompt = '''You have this comma separated listed needs of customers
    {}

    Now given a proposition 
    "{}" 
    
    Find the best 3 strings out of the above numbered list which best matches this proposition. Return in output only the number next to the matching string strictly only in json under a list called matches
    '''

    needsPrompt = prompt.format(needsString, proposition)
    print(needsPrompt)
    response = model.generate_content([needsPrompt])
    output = response.text
    output = output.replace('```json', '')
    output = output.replace('```', '')
    obj = load_json_from_string(output)
    print(obj)

    needsIndexes = [needs[int(idx)-1] for idx in obj['matches']]
    return needsIndexes #obj['matches']


def findTop3Topologies(proposition, demographic):

    topologies = fetchTopologies()

    topologies = topologies.dropna(axis=1, how='all')
    
    topologyAttributes = topologies['Column1']
    topologyNames = list(topologies.columns)
    topologyNames.remove('Column1')

    #print(" topologyNames = {} ", topologyNames)
    
    topologyDetails = {}

    for name in topologyNames:
        topologyDetails[name] = {}
        for attribute in topologyAttributes:
            topologyDetails[name][attribute] = topologies[name][pd.Index(topologies['Column1']).get_loc(attribute)]
            
    prompt = '''You have these listed topology names of a demographic in comma separated values below
    {}

    Now for each of these above topologies here are the details
    {}

    Now given a proposition details below
    
    {}

    and given a demographic details below

    {}
    
    Find the best 3 common strings out of the topology names which matches the proposition and the demographic the most. Return output strictly only in json under a list called matches
    '''

    topologyPrompt = prompt.format(", ".join(topologyNames), str(topologyDetails), proposition, demographic)
    response = model.generate_content([topologyPrompt])
    output = response.text
    output = output.replace('```json', '')
    output = output.replace('```', '')
    obj = load_json_from_string(output)
    print(obj)
    return obj['matches'], topologyDetails


def generatePropositionExample(productName, selectedProduct, moneyNeeds, customerExperience, sutainabilityNeeds):

    proposal = '''You are a business sales professional who can form propostion summary of 100 words based upon the details.
    Please take the below details and summarize a propostion in less than 100 words.

    product name = {}
    
    product type = {}

    money needs of customer which this product is supposed to target = {}

    Customer experience needs which our company will provide = {}

    Sustainability needs which our product takes care of = {}
    '''
    proposal = proposal.format(productName, selectedProduct, moneyNeeds, customerExperience, sutainabilityNeeds)
    response = model.generate_content([proposal])
    return response.text


def evaluateProposition(selectedCity, selectedProduct, userProposal, moneyNeeds, customerExpNeeds, sustainabilityNeeds):
    
    proposal = '''Given proposal is for the city {} with product {}. The propsal is as below.
    {}'''
    proposal = proposal.format(selectedCity, selectedProduct, userProposal)

    _, moneyNeedsDict = listNeeds('money_needs')
    _, customerExperienceDict = listNeeds('customer_exp')
    _, sutainabilityNeedsDict = listNeeds('sustainability')

    demographic = demographicsDict[selectedCity]['demographic']
    population = demographicsDict[selectedCity]['population']
    matchingTopologies, topologyDetails = findTop3Topologies(proposal, demographic)
   
    topologySumDict = {}

    for topology in matchingTopologies:
        sumTopology = 0
        for moneyNeed in moneyNeeds:
            print(" Money need = {}, Topology is {}".format(moneyNeed, topology))
            sumTopology = sumTopology+int(moneyNeedsDict[moneyNeed][topology])
        
        for customerExp in customerExpNeeds:
            sumTopology = sumTopology+int(customerExperienceDict[customerExp][topology])

        for sustainabilityNeed in sustainabilityNeeds:
            sumTopology = sumTopology+int(sutainabilityNeedsDict[sustainabilityNeed][topology])

        topologySumDict[topology] = math.floor(sumTopology/3)

    totalSubscriberTakeOut = 0
    for topology in matchingTopologies:
        proportion = int(topologyDetails[topology]['Proportion Sample'].replace('%', ''))
        topologyPopulation = math.floor((proportion * population) / 100)

        topologyScore = topologySumDict[topology]

        topologyPopulation = math.floor(topologyPopulation/2)
        if topologyScore <=250:
            topologyPopulation = topologyPopulation/2

        elif topologyScore >250 and topologyScore<=260:
            topologyPopulation = math.floor(topologyPopulation/1.8)
        
        elif topologyScore >260 and topologyScore<=270:
            topologyPopulation = math.floor(topologyPopulation/1.6)

        elif topologyScore >270 and topologyScore<=280:
            topologyPopulation = math.floor(topologyPopulation/1.4)

        elif topologyScore >280 and topologyScore<=300:
            topologyPopulation = topologyPopulation
        
        elif topologyScore >300 and topologyScore<=310:
            topologyPopulation = math.floor(topologyPopulation * 1.2)

        elif topologyScore >310 and topologyScore<=320:
            topologyPopulation = math.floor(topologyPopulation * 1.4)
        
        elif topologyScore >320 and topologyScore<=340:
            topologyPopulation = math.floor(topologyPopulation * 1.5)
        
        elif topologyScore >340 and topologyScore<=360:
            topologyPopulation = math.floor(topologyPopulation * 1.6)
        
        else:
             topologyPopulation = math.floor(topologyPopulation * 2)

        totalSubscriberTakeOut = totalSubscriberTakeOut + topologyPopulation
    
    return matchingTopologies, totalSubscriberTakeOut 
#        st.write("{}. {} and has subscriber takeout of {}".format(topology, topologySumDict[topology], topologyPopulation))

#    st.write(" Target Subscriber takeout = {}".format(totalSubscriberTakeOut))
#    st.write(" Total Subscriber take up for Year 3 = {}".format(subscriberTakeOutYear3))

#    if totalSubscriberTakeOut<subscriberTakeOutYear3:
#        st.write("Overall there is not a close match of your proposition to the main demographic. Takeout score difference = {}".format(subscriberTakeOutYear3-totalSubscriberTakeOut))
#    elif totalSubscriberTakeOut==subscriberTakeOutYear3:
#        st.write("Amazing! Your proposition  exactly match the target subscriber take oup for year 3")
#    else:
#        st.write("Great Job! Your proposition exceeds the target subscriber take up for year 3. Additional takeout = {}".format(totalSubscriberTakeOut- subscriberTakeOutYear3))