File size: 5,541 Bytes
0c6560f
 
 
e209a2d
0c6560f
e209a2d
0c6560f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e209a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c6560f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e209a2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c6560f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e209a2d
0c6560f
e209a2d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from db import fetch_db_rows_as_dicts
import google.generativeai as genai
import json
import os

GOOGLE_API_KEY=os.getenv('GEMINI_API_KEY')
genai.configure(api_key=GOOGLE_API_KEY)
model = genai.GenerativeModel(model_name = "gemini-pro")

def load_json_from_string(json_string):
    try:
        data = json.loads(json_string)
        return data
    except json.JSONDecodeError as e:
        print(f"Error decoding JSON: {e}")
    except Exception as e:
        print(f"An error occurred: {e}")

def concatenate_keys(keys):
    concatenated_string = ""
    for i, d in enumerate(keys, start=1):
        concatenated_string += f"{d} "
    return concatenated_string.strip()

def transform_to_dict_of_dicts(columns, rows):
    # Initialize the result dictionary
    result = {}

    # Iterate over each row
    for row in rows:
        print(dict(row))
        # The first element of the row is the key for the outer dictionary
        outer_key = row[0].strip()
        
        # Initialize the inner dictionary
        inner_dict = {}
        
        # Iterate over the rest of the elements in the row
        for i, value in enumerate(row[1:], start=1):
            # The corresponding column name is the key for the inner dictionary
            inner_key = columns[i].strip()
            # Add the key-value pair to the inner dictionary
            inner_dict[inner_key] = value
        
        # Add the inner dictionary to the result dictionary with the outer key
        result[outer_key] = inner_dict

    return result


def transform_topologies_to_dict(columns, rows):
    # Initialize the result dictionary
    result = {}

    # Iterate over each row
    for row in rows:
        print(dict(row))
        # The first element of the row is the key for the outer dictionary
        outer_key = row[0].strip()
        
        # Initialize the inner dictionary
        inner_dict = {}
        
        # Iterate over the rest of the elements in the row
        for i, value in enumerate(row[1:], start=1):
            # The corresponding column name is the key for the inner dictionary
            inner_key = columns[i].strip()
            # Add the key-value pair to the inner dictionary
            inner_dict[inner_key] = value
        
        # Add the inner dictionary to the result dictionary with the outer key
        result[outer_key] = inner_dict

    return result

def findTop3MoneyNeeds(proposition):
    moneyNeeds, rows = fetch_db_rows_as_dicts('money_needs.sqlite', 'money_needs')
    moneyNeedsDict = transform_to_dict_of_dicts(moneyNeeds, rows)
    print(list(moneyNeedsDict.keys()))
    needs = findTop3Needs(proposition, list(moneyNeedsDict.keys()))
    needDictIndexes = []
    for need in needs:
        needDictIndexes.append(moneyNeedsDict[need])

    print(needDictIndexes)
    return needs, needDictIndexes


def findTop3Needs(proposition, moneyNeeds):
    
    moneyNeedsString = concatenate_keys(moneyNeeds)

    prompt = '''You have these listed needs of customers
    {}

    Now given a proposition 
    "{}" 
    
    Find the best 3 strings out of the list which matches this proposition. Return output strictly only in json under a list called matches
    '''

    moneyNeedsPrompt = prompt.format(moneyNeedsString, proposition)
    response = model.generate_content([moneyNeedsPrompt])
    output = response.text
    output = output.replace('```json', '')
    output = output.replace('```', '')
    obj = load_json_from_string(output)
    print(obj)
    return obj['matches']


def findTop3Topologies(proposition):
    topologies, rows = fetch_db_rows_as_dicts('topologies.sqlite', 'topologies')
    
    topologiesDict = transform_to_dict_of_dicts(topologies, rows)
    print(topologiesDict)
    # prompt = '''You have these listed needs of customers
    # {}

    # Now given a proposition 
    # "{}" 
    
    # Find the best 3 strings out of the list which matches this proposition. Return output strictly only in json under a list called matches
    # '''

    # moneyNeedsPrompt = prompt.format(moneyNeedsString, proposition)
    # response = model.generate_content([moneyNeedsPrompt])
    # output = response.text
    # output = output.replace('```json', '')
    # output = output.replace('```', '')
    # obj = load_json_from_string(output)
    # print(obj)
    # return obj['matches']


def findTop3Needs(proposition, moneyNeeds):
    
    moneyNeedsString = concatenate_keys(moneyNeeds)

    prompt = '''You have these listed needs of customers
    {}

    Now given a proposition 
    "{}" 
    
    Find the best 3 strings out of the list which matches this proposition. Return output strictly only in json under a list called matches
    '''

    moneyNeedsPrompt = prompt.format(moneyNeedsString, proposition)
    response = model.generate_content([moneyNeedsPrompt])
    output = response.text
    output = output.replace('```json', '')
    output = output.replace('```', '')
    obj = load_json_from_string(output)
    print(obj)
    return obj['matches']


#findTop3Topologies('We have a product for family people giving them discounts and low interest loans for home appliances. They can pay us back in small instalments over the course of 4 years')
#findTop3MoneyNeeds('We have a product for family people giving them discounts and low interest loans for home appliances. They can pay us back in small instalments over the course of 4 years')

#We provide a credit card which gives 10% discount on purchasing home appliances and also provides low interest rates based loans