Spaces:
Sleeping
Sleeping
File size: 5,541 Bytes
0c6560f e209a2d 0c6560f e209a2d 0c6560f e209a2d 0c6560f e209a2d 0c6560f e209a2d 0c6560f e209a2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
from db import fetch_db_rows_as_dicts
import google.generativeai as genai
import json
import os
GOOGLE_API_KEY=os.getenv('GEMINI_API_KEY')
genai.configure(api_key=GOOGLE_API_KEY)
model = genai.GenerativeModel(model_name = "gemini-pro")
def load_json_from_string(json_string):
try:
data = json.loads(json_string)
return data
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {e}")
except Exception as e:
print(f"An error occurred: {e}")
def concatenate_keys(keys):
concatenated_string = ""
for i, d in enumerate(keys, start=1):
concatenated_string += f"{d} "
return concatenated_string.strip()
def transform_to_dict_of_dicts(columns, rows):
# Initialize the result dictionary
result = {}
# Iterate over each row
for row in rows:
print(dict(row))
# The first element of the row is the key for the outer dictionary
outer_key = row[0].strip()
# Initialize the inner dictionary
inner_dict = {}
# Iterate over the rest of the elements in the row
for i, value in enumerate(row[1:], start=1):
# The corresponding column name is the key for the inner dictionary
inner_key = columns[i].strip()
# Add the key-value pair to the inner dictionary
inner_dict[inner_key] = value
# Add the inner dictionary to the result dictionary with the outer key
result[outer_key] = inner_dict
return result
def transform_topologies_to_dict(columns, rows):
# Initialize the result dictionary
result = {}
# Iterate over each row
for row in rows:
print(dict(row))
# The first element of the row is the key for the outer dictionary
outer_key = row[0].strip()
# Initialize the inner dictionary
inner_dict = {}
# Iterate over the rest of the elements in the row
for i, value in enumerate(row[1:], start=1):
# The corresponding column name is the key for the inner dictionary
inner_key = columns[i].strip()
# Add the key-value pair to the inner dictionary
inner_dict[inner_key] = value
# Add the inner dictionary to the result dictionary with the outer key
result[outer_key] = inner_dict
return result
def findTop3MoneyNeeds(proposition):
moneyNeeds, rows = fetch_db_rows_as_dicts('money_needs.sqlite', 'money_needs')
moneyNeedsDict = transform_to_dict_of_dicts(moneyNeeds, rows)
print(list(moneyNeedsDict.keys()))
needs = findTop3Needs(proposition, list(moneyNeedsDict.keys()))
needDictIndexes = []
for need in needs:
needDictIndexes.append(moneyNeedsDict[need])
print(needDictIndexes)
return needs, needDictIndexes
def findTop3Needs(proposition, moneyNeeds):
moneyNeedsString = concatenate_keys(moneyNeeds)
prompt = '''You have these listed needs of customers
{}
Now given a proposition
"{}"
Find the best 3 strings out of the list which matches this proposition. Return output strictly only in json under a list called matches
'''
moneyNeedsPrompt = prompt.format(moneyNeedsString, proposition)
response = model.generate_content([moneyNeedsPrompt])
output = response.text
output = output.replace('```json', '')
output = output.replace('```', '')
obj = load_json_from_string(output)
print(obj)
return obj['matches']
def findTop3Topologies(proposition):
topologies, rows = fetch_db_rows_as_dicts('topologies.sqlite', 'topologies')
topologiesDict = transform_to_dict_of_dicts(topologies, rows)
print(topologiesDict)
# prompt = '''You have these listed needs of customers
# {}
# Now given a proposition
# "{}"
# Find the best 3 strings out of the list which matches this proposition. Return output strictly only in json under a list called matches
# '''
# moneyNeedsPrompt = prompt.format(moneyNeedsString, proposition)
# response = model.generate_content([moneyNeedsPrompt])
# output = response.text
# output = output.replace('```json', '')
# output = output.replace('```', '')
# obj = load_json_from_string(output)
# print(obj)
# return obj['matches']
def findTop3Needs(proposition, moneyNeeds):
moneyNeedsString = concatenate_keys(moneyNeeds)
prompt = '''You have these listed needs of customers
{}
Now given a proposition
"{}"
Find the best 3 strings out of the list which matches this proposition. Return output strictly only in json under a list called matches
'''
moneyNeedsPrompt = prompt.format(moneyNeedsString, proposition)
response = model.generate_content([moneyNeedsPrompt])
output = response.text
output = output.replace('```json', '')
output = output.replace('```', '')
obj = load_json_from_string(output)
print(obj)
return obj['matches']
#findTop3Topologies('We have a product for family people giving them discounts and low interest loans for home appliances. They can pay us back in small instalments over the course of 4 years')
#findTop3MoneyNeeds('We have a product for family people giving them discounts and low interest loans for home appliances. They can pay us back in small instalments over the course of 4 years')
#We provide a credit card which gives 10% discount on purchasing home appliances and also provides low interest rates based loans
|