ruchi
Finishing on New Game template end to end flow
7100756
raw
history blame
11.7 kB
from scripts.db_util import fetch_db_rows_as_dicts, fetchTopologies
import google.generativeai as genai
import json
import os
from dotenv import load_dotenv, dotenv_values
import pandas as pd
import math
load_dotenv()
demographicsDict ={
'CharlesTown': {
'demographic':'CharlesTown city people are Living for today people mostly with a population of 10000. Out of this 65% are between the age of 18-25.',
'population': 10000},
'Limburg': {'demographic':'Limburg city people are young families people mostly with a population of 20000. Out of this 65% are between the age of 30-45. Most of them have kids aged between 0-15',
'population': 20000}
}
GOOGLE_API_KEY= os.getenv('GEMINI_API_KEY')
genai.configure(api_key=GOOGLE_API_KEY)
model = genai.GenerativeModel(model_name = "gemini-pro")
DB_LOCATION = 'data.sqlite'
def load_json_from_string(json_string):
try:
data = json.loads(json_string)
return data
except json.JSONDecodeError as e:
print(f"Error decoding JSON: {e}")
except Exception as e:
print(f"An error occurred: {e}")
def concatenate_keys(keys):
concatenated_string = ""
for i, d in enumerate(keys, start=1):
concatenated_string += f"{i}. {d}"
print('##########################')
print(concatenated_string.strip())
return concatenated_string.strip()
def transform_to_dict_of_dicts(columns, rows):
# Initialize the result dictionary
result = {}
# Iterate over each row
for row in rows:
#print(dict(row))
# The first element of the row is the key for the outer dictionary
outer_key = row[0].strip()
# Initialize the inner dictionary
inner_dict = {}
# Iterate over the rest of the elements in the row
for i, value in enumerate(row[1:], start=1):
# The corresponding column name is the key for the inner dictionary
inner_key = columns[i].strip()
# Add the key-value pair to the inner dictionary
inner_dict[inner_key] = value
# Add the inner dictionary to the result dictionary with the outer key
result[outer_key] = inner_dict
return result
def transform_topologies_to_dict(columns, rows):
# Initialize the result dictionary
result = {}
# Iterate over each row
for row in rows:
#print(dict(row))
# The first element of the row is the key for the outer dictionary
outer_key = row[0].strip()
# Initialize the inner dictionary
inner_dict = {}
# Iterate over the rest of the elements in the row
for i, value in enumerate(row[1:], start=1):
# The corresponding column name is the key for the inner dictionary
inner_key = columns[i].strip()
# Add the key-value pair to the inner dictionary
inner_dict[inner_key] = value
# Add the inner dictionary to the result dictionary with the outer key
result[outer_key] = inner_dict
return result
def listNeeds(tableName, dbName=DB_LOCATION):
needs, rows = fetch_db_rows_as_dicts(dbName, tableName)
needsDict = transform_to_dict_of_dicts(needs, rows)
return list(needsDict.keys()), needsDict
def findTop3MoneyNeeds(proposition):
moneyNeeds, rows = fetch_db_rows_as_dicts(DB_LOCATION, 'money_needs')
moneyNeedsDict = transform_to_dict_of_dicts(moneyNeeds, rows)
#print(list(moneyNeedsDict.keys()))
needs = findTop3Needs(proposition, list(moneyNeedsDict.keys()))
needDictIndexes = []
for need in needs:
needDictIndexes.append(moneyNeedsDict[need])
#print(needDictIndexes)
return needs, needDictIndexes
def findTop3CustomerExperienceNeeds(proposition):
moneyNeeds, rows = fetch_db_rows_as_dicts(DB_LOCATION, 'customer_exp')
moneyNeedsDict = transform_to_dict_of_dicts(moneyNeeds, rows)
#print(list(moneyNeedsDict.keys()))
needs = findTop3Needs(proposition, list(moneyNeedsDict.keys()))
needDictIndexes = []
for need in needs:
needDictIndexes.append(moneyNeedsDict[need])
#print(needDictIndexes)
return needs, needDictIndexes
def findTop3SustainabilityNeeds(proposition):
print(" Proposition sustain = {}".format(proposition))
allNeeds, rows = fetch_db_rows_as_dicts(DB_LOCATION, 'sustainability')
needsDict = transform_to_dict_of_dicts(allNeeds, rows)
needs = findTop3Needs(proposition, list(needsDict.keys()))
needDictIndexes = []
print(list(needsDict.keys()))
for need in needs:
needDictIndexes.append(needsDict[need])
print(needDictIndexes)
return needs, needDictIndexes
def findTop3Needs(proposition, needs):
needsString = concatenate_keys(needs)
prompt = '''You have this comma separated listed needs of customers
{}
Now given a proposition
"{}"
Find the best 3 strings out of the above numbered list which best matches this proposition. Return in output only the number next to the matching string strictly only in json under a list called matches
'''
needsPrompt = prompt.format(needsString, proposition)
print(needsPrompt)
response = model.generate_content([needsPrompt])
output = response.text
output = output.replace('```json', '')
output = output.replace('```', '')
obj = load_json_from_string(output)
print(obj)
needsIndexes = [needs[int(idx)-1] for idx in obj['matches']]
return needsIndexes #obj['matches']
def findTop3Topologies(proposition, demographic):
topologies = fetchTopologies()
topologies = topologies.dropna(axis=1, how='all')
topologyAttributes = topologies['Column1']
topologyNames = list(topologies.columns)
topologyNames.remove('Column1')
#print(" topologyNames = {} ", topologyNames)
topologyDetails = {}
for name in topologyNames:
topologyDetails[name] = {}
for attribute in topologyAttributes:
topologyDetails[name][attribute] = topologies[name][pd.Index(topologies['Column1']).get_loc(attribute)]
prompt = '''You have these listed topology names of a demographic in comma separated values below
{}
Now for each of these above topologies here are the details
{}
Now given a proposition details below
{}
and given a demographic details below
{}
Find the best 3 common strings out of the topology names which matches the proposition and the demographic the most. Return output strictly only in json under a list called matches
'''
topologyPrompt = prompt.format(", ".join(topologyNames), str(topologyDetails), proposition, demographic)
response = model.generate_content([topologyPrompt])
output = response.text
output = output.replace('```json', '')
output = output.replace('```', '')
obj = load_json_from_string(output)
print(obj)
return obj['matches'], topologyDetails
def generatePropositionExample(productName, selectedProduct, moneyNeeds, customerExperience, sutainabilityNeeds):
proposal = '''You are a business sales professional who can form propostion summary of 100 words based upon the details.
Please take the below details and summarize a propostion in less than 100 words.
product name = {}
product type = {}
money needs of customer which this product is supposed to target = {}
Customer experience needs which our company will provide = {}
Sustainability needs which our product takes care of = {}
'''
proposal = proposal.format(productName, selectedProduct, moneyNeeds, customerExperience, sutainabilityNeeds)
response = model.generate_content([proposal])
return response.text
def evaluateProposition(selectedCity, selectedProduct, userProposal, moneyNeeds, customerExpNeeds, sustainabilityNeeds):
proposal = '''Given proposal is for the city {} with product {}. The propsal is as below.
{}'''
proposal = proposal.format(selectedCity, selectedProduct, userProposal)
_, moneyNeedsDict = listNeeds('money_needs')
_, customerExperienceDict = listNeeds('customer_exp')
_, sutainabilityNeedsDict = listNeeds('sustainability')
demographic = demographicsDict[selectedCity]['demographic']
population = demographicsDict[selectedCity]['population']
matchingTopologies, topologyDetails = findTop3Topologies(proposal, demographic)
topologySumDict = {}
for topology in matchingTopologies:
sumTopology = 0
for moneyNeed in moneyNeeds:
#print(" Money need = {}, Topology is {}".format(moneyNeed, topology))
sumTopology = sumTopology+int(moneyNeedsDict[moneyNeed][topology])
for customerExp in customerExpNeeds:
sumTopology = sumTopology+int(customerExperienceDict[customerExp][topology])
for sustainabilityNeed in sustainabilityNeeds:
sumTopology = sumTopology+int(sutainabilityNeedsDict[sustainabilityNeed][topology])
topologySumDict[topology] = math.floor(sumTopology/3)
totalSubscriberTakeOut = 0
for topology in matchingTopologies:
proportion = int(topologyDetails[topology]['Proportion Sample'].replace('%', ''))
topologyPopulation = math.floor((proportion * population) / 100)
topologyScore = topologySumDict[topology]
topologyPopulation = math.floor(topologyPopulation/2)
if topologyScore <=250:
topologyPopulation = topologyPopulation/2
elif topologyScore >250 and topologyScore<=260:
topologyPopulation = math.floor(topologyPopulation/1.8)
elif topologyScore >260 and topologyScore<=270:
topologyPopulation = math.floor(topologyPopulation/1.6)
elif topologyScore >270 and topologyScore<=280:
topologyPopulation = math.floor(topologyPopulation/1.4)
elif topologyScore >280 and topologyScore<=300:
topologyPopulation = topologyPopulation
elif topologyScore >300 and topologyScore<=310:
topologyPopulation = math.floor(topologyPopulation * 1.2)
elif topologyScore >310 and topologyScore<=320:
topologyPopulation = math.floor(topologyPopulation * 1.4)
elif topologyScore >320 and topologyScore<=340:
topologyPopulation = math.floor(topologyPopulation * 1.5)
elif topologyScore >340 and topologyScore<=360:
topologyPopulation = math.floor(topologyPopulation * 1.6)
else:
topologyPopulation = math.floor(topologyPopulation * 2)
totalSubscriberTakeOut = totalSubscriberTakeOut + topologyPopulation
return matchingTopologies, totalSubscriberTakeOut
# st.write("{}. {} and has subscriber takeout of {}".format(topology, topologySumDict[topology], topologyPopulation))
# st.write(" Target Subscriber takeout = {}".format(totalSubscriberTakeOut))
# st.write(" Total Subscriber take up for Year 3 = {}".format(subscriberTakeOutYear3))
# if totalSubscriberTakeOut<subscriberTakeOutYear3:
# st.write("Overall there is not a close match of your proposition to the main demographic. Takeout score difference = {}".format(subscriberTakeOutYear3-totalSubscriberTakeOut))
# elif totalSubscriberTakeOut==subscriberTakeOutYear3:
# st.write("Amazing! Your proposition exactly match the target subscriber take oup for year 3")
# else:
# st.write("Great Job! Your proposition exceeds the target subscriber take up for year 3. Additional takeout = {}".format(totalSubscriberTakeOut- subscriberTakeOutYear3))