from scripts.db_util import fetch_db_rows_as_dicts, fetchTopologies import google.generativeai as genai import json import os from dotenv import load_dotenv, dotenv_values import pandas as pd import math load_dotenv() demographicsDict ={ 'CharlesTown': { 'demographic':'CharlesTown city people are Living for today people mostly with a population of 10000. Out of this 65% are between the age of 18-25.', 'population': 10000}, 'Limburg': {'demographic':'Limburg city people are young families people mostly with a population of 20000. Out of this 65% are between the age of 30-45. Most of them have kids aged between 0-15', 'population': 20000} } GOOGLE_API_KEY= os.getenv('GEMINI_API_KEY') genai.configure(api_key=GOOGLE_API_KEY) model = genai.GenerativeModel(model_name = "gemini-pro") DB_LOCATION = 'data.sqlite' def load_json_from_string(json_string): try: data = json.loads(json_string) return data except json.JSONDecodeError as e: print(f"Error decoding JSON: {e}") except Exception as e: print(f"An error occurred: {e}") def concatenate_keys(keys): concatenated_string = "" for i, d in enumerate(keys, start=1): concatenated_string += f"{i}. {d}" print('##########################') print(concatenated_string.strip()) return concatenated_string.strip() def transform_to_dict_of_dicts(columns, rows): # Initialize the result dictionary result = {} # Iterate over each row for row in rows: #print(dict(row)) # The first element of the row is the key for the outer dictionary outer_key = row[0].strip() # Initialize the inner dictionary inner_dict = {} # Iterate over the rest of the elements in the row for i, value in enumerate(row[1:], start=1): # The corresponding column name is the key for the inner dictionary inner_key = columns[i].strip() # Add the key-value pair to the inner dictionary inner_dict[inner_key] = value # Add the inner dictionary to the result dictionary with the outer key result[outer_key] = inner_dict return result def transform_topologies_to_dict(columns, rows): # Initialize the result dictionary result = {} # Iterate over each row for row in rows: #print(dict(row)) # The first element of the row is the key for the outer dictionary outer_key = row[0].strip() # Initialize the inner dictionary inner_dict = {} # Iterate over the rest of the elements in the row for i, value in enumerate(row[1:], start=1): # The corresponding column name is the key for the inner dictionary inner_key = columns[i].strip() # Add the key-value pair to the inner dictionary inner_dict[inner_key] = value # Add the inner dictionary to the result dictionary with the outer key result[outer_key] = inner_dict return result def listNeeds(tableName, dbName=DB_LOCATION): needs, rows = fetch_db_rows_as_dicts(dbName, tableName) needsDict = transform_to_dict_of_dicts(needs, rows) return list(needsDict.keys()), needsDict def findTop3MoneyNeeds(proposition): moneyNeeds, rows = fetch_db_rows_as_dicts(DB_LOCATION, 'money_needs') moneyNeedsDict = transform_to_dict_of_dicts(moneyNeeds, rows) #print(list(moneyNeedsDict.keys())) needs = findTop3Needs(proposition, list(moneyNeedsDict.keys())) needDictIndexes = [] for need in needs: needDictIndexes.append(moneyNeedsDict[need]) #print(needDictIndexes) return needs, needDictIndexes def findTop3CustomerExperienceNeeds(proposition): moneyNeeds, rows = fetch_db_rows_as_dicts(DB_LOCATION, 'customer_exp') moneyNeedsDict = transform_to_dict_of_dicts(moneyNeeds, rows) #print(list(moneyNeedsDict.keys())) needs = findTop3Needs(proposition, list(moneyNeedsDict.keys())) needDictIndexes = [] for need in needs: needDictIndexes.append(moneyNeedsDict[need]) #print(needDictIndexes) return needs, needDictIndexes def findTop3SustainabilityNeeds(proposition): print(" Proposition sustain = {}".format(proposition)) allNeeds, rows = fetch_db_rows_as_dicts(DB_LOCATION, 'sustainability') needsDict = transform_to_dict_of_dicts(allNeeds, rows) needs = findTop3Needs(proposition, list(needsDict.keys())) needDictIndexes = [] print(list(needsDict.keys())) for need in needs: needDictIndexes.append(needsDict[need]) print(needDictIndexes) return needs, needDictIndexes def findTop3Needs(proposition, needs): needsString = concatenate_keys(needs) prompt = '''You have this comma separated listed needs of customers {} Now given a proposition "{}" Find the best 3 strings out of the above numbered list which best matches this proposition. Return in output only the number next to the matching string strictly only in json under a list called matches ''' needsPrompt = prompt.format(needsString, proposition) print(needsPrompt) response = model.generate_content([needsPrompt]) output = response.text output = output.replace('```json', '') output = output.replace('```', '') obj = load_json_from_string(output) print(obj) needsIndexes = [needs[int(idx)-1] for idx in obj['matches']] return needsIndexes #obj['matches'] def findTop3Topologies(proposition, demographic): topologies = fetchTopologies() topologies = topologies.dropna(axis=1, how='all') topologyAttributes = topologies['Column1'] topologyNames = list(topologies.columns) topologyNames.remove('Column1') #print(" topologyNames = {} ", topologyNames) topologyDetails = {} for name in topologyNames: topologyDetails[name] = {} for attribute in topologyAttributes: topologyDetails[name][attribute] = topologies[name][pd.Index(topologies['Column1']).get_loc(attribute)] prompt = '''You have these listed topology names of a demographic in comma separated values below {} Now for each of these above topologies here are the details {} Now given a proposition details below {} and given a demographic details below {} Find the best 3 common strings out of the topology names which matches the proposition and the demographic the most. Return output strictly only in json under a list called matches ''' topologyPrompt = prompt.format(", ".join(topologyNames), str(topologyDetails), proposition, demographic) response = model.generate_content([topologyPrompt]) output = response.text output = output.replace('```json', '') output = output.replace('```', '') obj = load_json_from_string(output) print(obj) return obj['matches'], topologyDetails def generatePropositionExample(productName, selectedProduct, moneyNeeds, customerExperience, sutainabilityNeeds): proposal = '''You are a business sales professional who can form propostion summary of 100 words based upon the details. Please take the below details and summarize a propostion in less than 100 words. product name = {} product type = {} money needs of customer which this product is supposed to target = {} Customer experience needs which our company will provide = {} Sustainability needs which our product takes care of = {} ''' proposal = proposal.format(productName, selectedProduct, moneyNeeds, customerExperience, sutainabilityNeeds) response = model.generate_content([proposal]) return response.text def evaluateProposition(selectedCity, selectedProduct, userProposal, moneyNeeds, customerExpNeeds, sustainabilityNeeds): proposal = '''Given proposal is for the city {} with product {}. The propsal is as below. {}''' proposal = proposal.format(selectedCity, selectedProduct, userProposal) _, moneyNeedsDict = listNeeds('money_needs') _, customerExperienceDict = listNeeds('customer_exp') _, sutainabilityNeedsDict = listNeeds('sustainability') demographic = demographicsDict[selectedCity]['demographic'] population = demographicsDict[selectedCity]['population'] matchingTopologies, topologyDetails = findTop3Topologies(proposal, demographic) topologySumDict = {} for topology in matchingTopologies: sumTopology = 0 for moneyNeed in moneyNeeds: print(" Money need = {}, Topology is {}".format(moneyNeed, topology)) sumTopology = sumTopology+int(moneyNeedsDict[moneyNeed][topology]) for customerExp in customerExpNeeds: sumTopology = sumTopology+int(customerExperienceDict[customerExp][topology]) for sustainabilityNeed in sustainabilityNeeds: sumTopology = sumTopology+int(sutainabilityNeedsDict[sustainabilityNeed][topology]) topologySumDict[topology] = math.floor(sumTopology/3) totalSubscriberTakeOut = 0 for topology in matchingTopologies: proportion = int(topologyDetails[topology]['Proportion Sample'].replace('%', '')) topologyPopulation = math.floor((proportion * population) / 100) topologyScore = topologySumDict[topology] topologyPopulation = math.floor(topologyPopulation/2) if topologyScore <=250: topologyPopulation = topologyPopulation/2 elif topologyScore >250 and topologyScore<=260: topologyPopulation = math.floor(topologyPopulation/1.8) elif topologyScore >260 and topologyScore<=270: topologyPopulation = math.floor(topologyPopulation/1.6) elif topologyScore >270 and topologyScore<=280: topologyPopulation = math.floor(topologyPopulation/1.4) elif topologyScore >280 and topologyScore<=300: topologyPopulation = topologyPopulation elif topologyScore >300 and topologyScore<=310: topologyPopulation = math.floor(topologyPopulation * 1.2) elif topologyScore >310 and topologyScore<=320: topologyPopulation = math.floor(topologyPopulation * 1.4) elif topologyScore >320 and topologyScore<=340: topologyPopulation = math.floor(topologyPopulation * 1.5) elif topologyScore >340 and topologyScore<=360: topologyPopulation = math.floor(topologyPopulation * 1.6) else: topologyPopulation = math.floor(topologyPopulation * 2) totalSubscriberTakeOut = totalSubscriberTakeOut + topologyPopulation return matchingTopologies, totalSubscriberTakeOut # st.write("{}. {} and has subscriber takeout of {}".format(topology, topologySumDict[topology], topologyPopulation)) # st.write(" Target Subscriber takeout = {}".format(totalSubscriberTakeOut)) # st.write(" Total Subscriber take up for Year 3 = {}".format(subscriberTakeOutYear3)) # if totalSubscriberTakeOut