import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline import torch import spaces device = "cuda" MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) image = pipe( prompt = prompt, negative_prompt = negative_prompt, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, width = width, height = height, generator = generator ).images[0] return image @spaces.GPU def reject(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) image = pipe( prompt = prompt, negative_prompt = negative_prompt, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, width = width, height = height, generator = generator ).images[0] return image @spaces.GPU def accept(*args): conv_id_element = args[0] conv_id_element.visible=True ''' markdown_blocks = list(args[1:-2]) labels = args[-2] data = {'conv_id': conv_id, 'labels': labels} with open(f"./labels/conv_{conv_id}", 'w') as f: json.dump(data, f, indent=4) new_conversation = get_conversation() new_conv_id = new_conversation['conv_id'] new_transcript = pad_transcript(new_conversation['transcript'], max_conversation_length) for i in range(max_conversation_length): if new_transcript[i]['speaker'] != '': markdown_blocks[i] = gr.Markdown(f"""
**{new_transcript[i]['speaker']}**: {new_transcript[i]['response']}""", visible=True) else: markdown_blocks[i] = gr.Markdown("", visible=False) new_labels = gr.CheckboxGroup(choices=checkbox_choices, label="", visible=False) conv_len = gr.Number(value=len(new_transcript), visible=False) return [new_conv_id] + list(markdown_blocks) + [labels] + [new_labels] + [conv_len] ''' examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ power_device = "GPU" with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f""" # Text-to-Image Gradio Template Currently running on {power_device}. """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) left_button = gr.Button("Left", scale=0) right_button = gr.Button("Right", scale=0) result = gr.Image(label="Result", show_label=False) conv_id_element = gr.Text(value=1, visible=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=12, step=1, value=2, ) gr.Examples( examples = examples, inputs = [prompt] ) left_button.click( fn = reject, inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result] ) right_button.click( fn = accept, inputs = [conv_id_element, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [conv_id_element] ) demo.queue().launch()