supermy commited on
Commit
5bb0a8b
·
1 Parent(s): 0eb2d67

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +81 -0
app.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+
4
+ import gradio as gr
5
+ import torch.nn.functional as F
6
+
7
+ from transformers import AutoTokenizer, GPT2LMHeadModel
8
+ tokenizer = AutoTokenizer.from_pretrained("supermy/jinyong")
9
+ model = GPT2LMHeadModel.from_pretrained("supermy/jinyong")
10
+ model.eval()
11
+
12
+ def top_k_top_p_filtering( logits, top_k=0, top_p=0.0, filter_value=-float('Inf') ):
13
+ assert logits.dim() == 1
14
+ top_k = min( top_k, logits.size(-1) )
15
+ if top_k > 0:
16
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
17
+ logits[indices_to_remove] = filter_value
18
+ if top_p > 0.0:
19
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True)
20
+ cumulative_probs = torch.cumsum( F.softmax(sorted_logits, dim=-1), dim=-1 )
21
+ sorted_indices_to_remove = cumulative_probs > top_p
22
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
23
+ sorted_indices_to_remove[..., 0] = 0
24
+ indices_to_remove = sorted_indices[sorted_indices_to_remove]
25
+ logits[indices_to_remove] = filter_value
26
+ return logits
27
+
28
+ def generate(title, context, max_len):
29
+
30
+ # input_ids.extend( tokenizer.encode(input_text + "-", add_special_tokens=False) )
31
+
32
+ title_ids = tokenizer.encode(title, add_special_tokens=False)
33
+ context_ids = tokenizer.encode(context, add_special_tokens=False)
34
+ input_ids = title_ids + [sep_id] + context_ids
35
+ print(input_ids)
36
+ cur_len = len(input_ids)
37
+ input_len = cur_len
38
+ last_token_id = input_ids[-1]
39
+ input_ids = torch.tensor([input_ids], dtype=torch.long)
40
+
41
+ # input_ids = [tokenizer.cls_token_id]
42
+ # input_ids.extend( tokenizer.encode(title + "-" +context, add_special_tokens=False) )
43
+ # input_ids = torch.tensor( [input_ids] )
44
+
45
+ print(input_ids)
46
+
47
+ while True:
48
+ outputs = model( input_ids=input_ids[:, -200:] )
49
+ logits = outputs.logits
50
+ next_token_logits = logits[0, -1, :]
51
+ next_token_logits = next_token_logits / 1
52
+ next_token_logits[unk_id] = -float('Inf')
53
+ filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=0, top_p=0.85)
54
+ next_token_id = torch.multinomial( F.softmax(filtered_logits, dim=-1), num_samples=1 )
55
+ input_ids = torch.cat( ( input_ids, next_token_id.unsqueeze(0) ), dim=1 )
56
+ cur_len += 1
57
+ word = tokenizer.convert_ids_to_tokens( next_token_id.item() )
58
+ if cur_len >= ( input_len + max_len ) and last_token_id == 8 and next_token_id == 3:
59
+ break
60
+ if cur_len >= ( input_len + max_len ) and word in [".", "。", "!", "!", "?", "?", ",", ","]:
61
+ break
62
+ if next_token_id == eod_id:
63
+ break
64
+ result = tokenizer.decode( input_ids.squeeze(0) )
65
+ return result
66
+
67
+ if __name__ == '__main__':
68
+ eod_id = tokenizer.convert_tokens_to_ids("<eod>")
69
+ sep_id = tokenizer.sep_token_id
70
+ unk_id = tokenizer.unk_token_id
71
+
72
+
73
+ gr.Interface(
74
+ fn=generate,
75
+ inputs=[
76
+ gr.Textbox(lines=1, placeholder="输入文本标题:射雕英雄传", value="射雕英雄传",label="文本标题"),
77
+ gr.Textbox(lines=7, placeholder="输入文本内容:郭靖练功偶遇高人,见道长那轻功,转头便拜其为师", value="郭靖练功偶遇高人,见道长那轻功,转头便拜其为师。",label="初始文本"),
78
+ "number"
79
+ ],
80
+ outputs=gr.Textbox(lines=15, placeholder="AI生成的文本显示在这里。",label="生成的文本")
81
+ ).launch()