Spaces:
Running
Running
Rename kaggle_gpu_1.py to kaggle_florence_gpu_1.py
Browse files- kaggle_florence_gpu_1.py +134 -0
- kaggle_gpu_1.py +0 -255
kaggle_florence_gpu_1.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#gpu0
|
2 |
+
%cd /kaggle/florence-sam
|
3 |
+
import os
|
4 |
+
from typing import Tuple, Optional
|
5 |
+
import shutil
|
6 |
+
import os
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
import spaces
|
10 |
+
import supervision as sv
|
11 |
+
import torch
|
12 |
+
from PIL import Image
|
13 |
+
from tqdm import tqdm
|
14 |
+
import sys
|
15 |
+
import json
|
16 |
+
import pickle
|
17 |
+
os.chdir("/kaggle/florence-sam")
|
18 |
+
sys.path.append('/kaggle/florence-sam')
|
19 |
+
from utils.video import generate_unique_name, create_directory, delete_directory
|
20 |
+
from utils.florencegpu2 import load_florence_model, run_florence_inference, \
|
21 |
+
FLORENCE_DETAILED_CAPTION_TASK, \
|
22 |
+
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK, FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
|
23 |
+
from utils.modes import IMAGE_INFERENCE_MODES, IMAGE_OPEN_VOCABULARY_DETECTION_MODE, \
|
24 |
+
IMAGE_CAPTION_GROUNDING_MASKS_MODE, VIDEO_INFERENCE_MODES
|
25 |
+
from utils.sam import load_sam_image_model, run_sam_inference, load_sam_video_model
|
26 |
+
DEVICE = torch.device("cuda")
|
27 |
+
DEVICE = [torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())][-1]
|
28 |
+
#DEVICE = [torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())][0]
|
29 |
+
|
30 |
+
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
31 |
+
if torch.cuda.get_device_properties(0).major >= 8:
|
32 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
33 |
+
torch.backends.cudnn.allow_tf32 = True
|
34 |
+
|
35 |
+
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
|
36 |
+
SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE)
|
37 |
+
'''
|
38 |
+
with open('/kaggle/texts.pkl', 'rb') as file:
|
39 |
+
texts = pickle.load(file)
|
40 |
+
print(texts)
|
41 |
+
'''
|
42 |
+
with open('/kaggle/output_video1.pkl', 'rb') as file:
|
43 |
+
output_video = pickle.load(file)
|
44 |
+
print(output_video)
|
45 |
+
|
46 |
+
VIDEO_SCALE_FACTOR = 1
|
47 |
+
VIDEO_TARGET_DIRECTORY = "/kaggle/"
|
48 |
+
create_directory(directory_path=VIDEO_TARGET_DIRECTORY)
|
49 |
+
|
50 |
+
|
51 |
+
video_input= output_video
|
52 |
+
#texts = ['the table', 'men','ball']
|
53 |
+
#VIDEO_TARGET_DIRECTORY = "/content/"
|
54 |
+
if not video_input:
|
55 |
+
print("Please upload a video.")
|
56 |
+
|
57 |
+
frame_generator = sv.get_video_frames_generator(video_input)
|
58 |
+
frame = next(frame_generator)
|
59 |
+
frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
detections_list = []
|
65 |
+
width, height = frame.size
|
66 |
+
all_ok_bboxes = []
|
67 |
+
half_area = width * height * 0.5
|
68 |
+
|
69 |
+
# 存储所有 the table 的边界框和面积
|
70 |
+
table_bboxes = []
|
71 |
+
table_areas = []
|
72 |
+
given_area =1000
|
73 |
+
ok_result =[]
|
74 |
+
for text in texts:
|
75 |
+
_, result = run_florence_inference(
|
76 |
+
model=FLORENCE_MODEL,
|
77 |
+
processor=FLORENCE_PROCESSOR,
|
78 |
+
device=DEVICE,
|
79 |
+
image=frame,
|
80 |
+
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
|
81 |
+
text=text )
|
82 |
+
#print(result)
|
83 |
+
for bbox, label in zip(result['<OPEN_VOCABULARY_DETECTION>']['bboxes'], result['<OPEN_VOCABULARY_DETECTION>']['bboxes_labels']):
|
84 |
+
print(bbox, label)
|
85 |
+
new_result = {'<OPEN_VOCABULARY_DETECTION>': {'bboxes': [bbox], 'bboxes_labels': [label], 'polygons': [], 'polygons_labels': []}}
|
86 |
+
print(new_result)
|
87 |
+
if label == 'ping pong ball':
|
88 |
+
# 计算当前 ping pong ball 的面积
|
89 |
+
area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
|
90 |
+
# 检查面积是否不超过给定边界框的面积
|
91 |
+
if area <= given_area:
|
92 |
+
all_ok_bboxes.append([[bbox[0], bbox[1]], [bbox[2], bbox[3]]])
|
93 |
+
ok_result.append(new_result)
|
94 |
+
elif label == 'the table':
|
95 |
+
# 计算当前 the table 的面积
|
96 |
+
print('the tablethe table!!!!')
|
97 |
+
area = (bbox[2] - bbox[0]) * (bbox[3] - bbox[1])
|
98 |
+
table_bboxes.append([[bbox[0] - 100, bbox[1]], [bbox[2] + 100, bbox[3]]])
|
99 |
+
table_areas.append(area)
|
100 |
+
elif label == 'table tennis bat':
|
101 |
+
all_ok_bboxes.append([[bbox[0], bbox[1]], [bbox[2], bbox[3]]])
|
102 |
+
ok_result.append(new_result)
|
103 |
+
elif label == 'men':
|
104 |
+
print('menmne!!!!')
|
105 |
+
all_ok_bboxes.append([[bbox[0], bbox[1]], [bbox[2], bbox[3]]])
|
106 |
+
ok_result.append(new_result)
|
107 |
+
|
108 |
+
# 找到面积最大的 the table
|
109 |
+
if table_areas:
|
110 |
+
max_area_index = table_areas.index(max(table_areas))
|
111 |
+
max_area_bbox = table_bboxes[max_area_index]
|
112 |
+
|
113 |
+
# 检查面积是否超过50%
|
114 |
+
if max(table_areas) < half_area:
|
115 |
+
all_ok_bboxes.append(max_area_bbox)
|
116 |
+
ok_result.append(new_result)
|
117 |
+
|
118 |
+
print(ok_result)
|
119 |
+
with open('/kaggle/all_ok_bboxes.pkl', 'wb') as file:
|
120 |
+
pickle.dump(all_ok_bboxes, file)
|
121 |
+
|
122 |
+
for xyxy in ok_result:
|
123 |
+
print(frame.size,xyxy)
|
124 |
+
detections = sv.Detections.from_lmm(
|
125 |
+
lmm=sv.LMM.FLORENCE_2,
|
126 |
+
result=xyxy,
|
127 |
+
resolution_wh=frame.size
|
128 |
+
)
|
129 |
+
detections = run_sam_inference(SAM_IMAGE_MODEL, frame, detections)
|
130 |
+
print(detections)
|
131 |
+
detections_list.append(detections)
|
132 |
+
with open('/kaggle/detections_list.pkl', 'wb') as file:
|
133 |
+
pickle.dump(detections_list, file)
|
134 |
+
print(detections_list)
|
kaggle_gpu_1.py
DELETED
@@ -1,255 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
from typing import Tuple, Optional
|
3 |
-
import shutil
|
4 |
-
import os
|
5 |
-
import cv2
|
6 |
-
import numpy as np
|
7 |
-
import spaces
|
8 |
-
import supervision as sv
|
9 |
-
import torch
|
10 |
-
from PIL import Image
|
11 |
-
from tqdm import tqdm
|
12 |
-
from utils.video import generate_unique_name, create_directory, delete_directory
|
13 |
-
from utils.florence import load_florence_model, run_florence_inference, \
|
14 |
-
FLORENCE_DETAILED_CAPTION_TASK, \
|
15 |
-
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK, FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
|
16 |
-
from utils.modes import IMAGE_INFERENCE_MODES, IMAGE_OPEN_VOCABULARY_DETECTION_MODE, \
|
17 |
-
IMAGE_CAPTION_GROUNDING_MASKS_MODE, VIDEO_INFERENCE_MODES
|
18 |
-
from utils.sam import load_sam_image_model, run_sam_inference, load_sam_video_model
|
19 |
-
DEVICE = torch.device("cuda")
|
20 |
-
DEVICE = [torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())][-1]
|
21 |
-
DEVICE = [torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())][0]
|
22 |
-
# DEVICE = torch.device("cpu")
|
23 |
-
|
24 |
-
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
25 |
-
if torch.cuda.get_device_properties(0).major >= 8:
|
26 |
-
torch.backends.cuda.matmul.allow_tf32 = True
|
27 |
-
torch.backends.cudnn.allow_tf32 = True
|
28 |
-
|
29 |
-
|
30 |
-
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
|
31 |
-
SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE)
|
32 |
-
SAM_VIDEO_MODEL = load_sam_video_model(device=DEVICE)
|
33 |
-
|
34 |
-
|
35 |
-
# @title #视频帧提取
|
36 |
-
import supervision as sv
|
37 |
-
import os
|
38 |
-
import cv2
|
39 |
-
import shutil
|
40 |
-
def extract_video_frames(video_input):
|
41 |
-
# 目标目录
|
42 |
-
VIDEO_TARGET_DIRECTORY = '/kaggle/working/frame'
|
43 |
-
if not os.path.exists(VIDEO_TARGET_DIRECTORY):
|
44 |
-
os.makedirs(VIDEO_TARGET_DIRECTORY)
|
45 |
-
|
46 |
-
shutil.rmtree(VIDEO_TARGET_DIRECTORY)
|
47 |
-
# 视频缩放因子
|
48 |
-
VIDEO_SCALE_FACTOR = 1
|
49 |
-
|
50 |
-
# 获取视频信息
|
51 |
-
video_info = sv.VideoInfo.from_video_path(video_input)
|
52 |
-
print(video_info)
|
53 |
-
|
54 |
-
# 生成唯一的名称
|
55 |
-
# 使用视频文件名作为唯一名称
|
56 |
-
name = os.path.splitext(os.path.basename(video_input))[0]
|
57 |
-
|
58 |
-
# 构建帧目录路径
|
59 |
-
frame_directory_path = os.path.join(VIDEO_TARGET_DIRECTORY, name)
|
60 |
-
|
61 |
-
# 创建 ImageSink 对象
|
62 |
-
frames_sink = sv.ImageSink(
|
63 |
-
target_dir_path=frame_directory_path,
|
64 |
-
image_name_pattern="{:05d}.jpeg"
|
65 |
-
)
|
66 |
-
|
67 |
-
# 获取视频帧生成器
|
68 |
-
frames_generator = sv.get_video_frames_generator(video_input)
|
69 |
-
|
70 |
-
# 使用 with 语句确保资源正确释放
|
71 |
-
with frames_sink:
|
72 |
-
# 遍历每一帧
|
73 |
-
for i, frame in enumerate(frames_generator):
|
74 |
-
# 如果需要缩放帧
|
75 |
-
if VIDEO_SCALE_FACTOR != 1:
|
76 |
-
frame = cv2.resize(frame, None, fx=VIDEO_SCALE_FACTOR, fy=VIDEO_SCALE_FACTOR)
|
77 |
-
|
78 |
-
# 保存帧
|
79 |
-
frames_sink.save_image(frame)
|
80 |
-
return frame_directory_path,video_info
|
81 |
-
|
82 |
-
# 使用示例
|
83 |
-
video_input_path = '/kaggle/input/pinnpong/VS_010.mp4'# @param {type:"string"}
|
84 |
-
video_frame_dir,video_info = extract_video_frames(video_input_path)
|
85 |
-
|
86 |
-
texts = ['the table', 'all person','ball']
|
87 |
-
from PIL import Image
|
88 |
-
import supervision as sv
|
89 |
-
|
90 |
-
def detect_objects_in_image(image_input_path, texts):
|
91 |
-
# 加载图像
|
92 |
-
image_input = Image.open(image_input_path)
|
93 |
-
|
94 |
-
# 初始化检测列表
|
95 |
-
detections_list = []
|
96 |
-
|
97 |
-
# 对每个文本进行检测
|
98 |
-
for text in texts:
|
99 |
-
_, result = run_florence_inference(
|
100 |
-
model=FLORENCE_MODEL,
|
101 |
-
processor=FLORENCE_PROCESSOR,
|
102 |
-
device=DEVICE,
|
103 |
-
image=image_input,
|
104 |
-
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
|
105 |
-
text=text
|
106 |
-
)
|
107 |
-
|
108 |
-
# 从结果中构建监督检测对象
|
109 |
-
detections = sv.Detections.from_lmm(
|
110 |
-
lmm=sv.LMM.FLORENCE_2,
|
111 |
-
result=result,
|
112 |
-
resolution_wh=image_input.size
|
113 |
-
)
|
114 |
-
|
115 |
-
# 运行 SAM 推理
|
116 |
-
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
|
117 |
-
|
118 |
-
# 将检测结果添加到列表中
|
119 |
-
detections_list.append(detections)
|
120 |
-
|
121 |
-
# 合并所有检测结果
|
122 |
-
detections = sv.Detections.merge(detections_list)
|
123 |
-
|
124 |
-
# 再次运行 SAM 推理
|
125 |
-
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
|
126 |
-
|
127 |
-
return detections
|
128 |
-
# @title #合并遮罩加模糊merge_image_with_mask
|
129 |
-
import numpy as np
|
130 |
-
import cv2
|
131 |
-
import os
|
132 |
-
from PIL import Image, ImageFilter
|
133 |
-
|
134 |
-
def merge_image_with_mask(image_input_path, detections, output_folder):
|
135 |
-
# 创建输出文件夹
|
136 |
-
if not os.path.exists(output_folder):
|
137 |
-
os.makedirs(output_folder)
|
138 |
-
|
139 |
-
# 提取图片文件名
|
140 |
-
image_name = os.path.basename(image_input_path)
|
141 |
-
output_path = os.path.join(output_folder, image_name)
|
142 |
-
|
143 |
-
# 创建掩码文件夹
|
144 |
-
mask_folder = '/kaggle/working/mask'
|
145 |
-
if not os.path.exists(mask_folder):
|
146 |
-
os.makedirs(mask_folder)
|
147 |
-
|
148 |
-
# 合并掩码
|
149 |
-
combined_mask = np.zeros_like(detections.mask[0], dtype=np.uint8)
|
150 |
-
for mask in detections.mask:
|
151 |
-
combined_mask += mask
|
152 |
-
combined_mask = np.clip(combined_mask, 0, 255)
|
153 |
-
combined_mask = combined_mask.astype(np.uint8)
|
154 |
-
|
155 |
-
# 膨胀掩码
|
156 |
-
kernel = np.ones((6, 6), np.uint8)
|
157 |
-
dilated_mask = cv2.dilate(combined_mask, kernel, iterations=1)
|
158 |
-
|
159 |
-
# 保存膨胀后的掩码
|
160 |
-
#mask_path = os.path.join(mask_folder, 'test1.png')
|
161 |
-
#cv2.imwrite(mask_path, dilated_mask * 255)
|
162 |
-
|
163 |
-
# 读取原始图像
|
164 |
-
original_image = cv2.imread(image_input_path)
|
165 |
-
|
166 |
-
# 读取遮罩图片
|
167 |
-
#mask_image = cv2.imread(mask_path)
|
168 |
-
|
169 |
-
# 确保原始图片和遮罩图片尺寸一致
|
170 |
-
#assert original_image.shape == mask_image.shape, "The images must have the same dimensions."
|
171 |
-
|
172 |
-
# 使用掩膜从原始图片中提取部分区域
|
173 |
-
masked_image = cv2.bitwise_and(original_image, original_image, mask=dilated_mask)
|
174 |
-
# 将掩膜应用于原始图片
|
175 |
-
blurred_image = cv2.GaussianBlur(original_image, (21, 21), 500) # 使用较大的核大小进行模糊
|
176 |
-
# 将提取的部分区域叠加到模糊后的图片上
|
177 |
-
blurred_image = cv2.bitwise_and(blurred_image, blurred_image, mask=~dilated_mask)
|
178 |
-
# 将提取的部分区域叠加到模糊后的图片上
|
179 |
-
result = np.where(dilated_mask[:, :, None] > 0, masked_image, blurred_image)
|
180 |
-
|
181 |
-
# 保存合并后的图片
|
182 |
-
cv2.imwrite(output_path, result)
|
183 |
-
# @title #进度条批量处理文件夹process_images_in_folder(input_folder)
|
184 |
-
from tqdm import tqdm
|
185 |
-
import shutil
|
186 |
-
def process_images_in_folder(input_folder):
|
187 |
-
# 确保输出文件夹存在
|
188 |
-
output_folder = '/kaggle/working/okframe'
|
189 |
-
if not os.path.exists(output_folder):
|
190 |
-
os.makedirs(output_folder)
|
191 |
-
shutil.rmtree('/kaggle/working/okframe')
|
192 |
-
output_folder = '/kaggle/working/okframe'
|
193 |
-
if not os.path.exists(output_folder):
|
194 |
-
os.makedirs(output_folder)
|
195 |
-
|
196 |
-
# 获取文件夹中的所有文件
|
197 |
-
files = [f for f in os.listdir(input_folder) if f.endswith('.jpg') or f.endswith('.png') or f.endswith('.jpeg')]
|
198 |
-
|
199 |
-
# 使用 tqdm 显示进度条
|
200 |
-
for filename in tqdm(files, desc="Processing Images"):
|
201 |
-
image_input_path = os.path.join(input_folder, filename)
|
202 |
-
|
203 |
-
# 检测对象
|
204 |
-
detections = detect_objects_in_image(
|
205 |
-
image_input_path=image_input_path,
|
206 |
-
texts=texts
|
207 |
-
)
|
208 |
-
|
209 |
-
# 合并图像
|
210 |
-
merge_image_with_mask(
|
211 |
-
image_input_path=image_input_path,
|
212 |
-
detections=detections,
|
213 |
-
output_folder=output_folder
|
214 |
-
)
|
215 |
-
|
216 |
-
# 使用示例
|
217 |
-
video_name = video_input_path.split('/')[-1].split('.')[0]
|
218 |
-
input_folder = f'/kaggle/working/frame/{video_name}'
|
219 |
-
process_images_in_folder(input_folder)
|
220 |
-
|
221 |
-
# @title #合并所有帧成新视频frames_to_video(frame_folder, video_output_path, video_info)
|
222 |
-
import cv2
|
223 |
-
import os
|
224 |
-
import natsort
|
225 |
-
import numpy as np
|
226 |
-
|
227 |
-
def frames_to_video(frame_folder, video_output_path, video_info):
|
228 |
-
# 获取所有帧文件名,并使用 natsorted 进行自然排序
|
229 |
-
frame_files = natsort.natsorted([f for f in os.listdir(frame_folder) if f.endswith(('.jpg', '.png', '.jpeg'))])
|
230 |
-
|
231 |
-
# 创建视频写入器
|
232 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 编码器
|
233 |
-
out = cv2.VideoWriter(video_output_path, fourcc, video_info.fps, (video_info.width, video_info.height))
|
234 |
-
|
235 |
-
# 遍历所有帧文件
|
236 |
-
for frame_file in frame_files:
|
237 |
-
frame_path = os.path.join(frame_folder, frame_file)
|
238 |
-
frame = cv2.imread(frame_path)
|
239 |
-
|
240 |
-
# 如果帧大小不匹配,调整大小
|
241 |
-
if frame.shape[:2] != (video_info.height, video_info.width):
|
242 |
-
frame = cv2.resize(frame, (video_info.width, video_info.height))
|
243 |
-
|
244 |
-
# 写入视频
|
245 |
-
out.write(frame)
|
246 |
-
|
247 |
-
# 释放资源
|
248 |
-
out.release()
|
249 |
-
|
250 |
-
# 使用示例
|
251 |
-
video_info = video_info
|
252 |
-
frame_folder = '/kaggle/working/okframe'
|
253 |
-
video_output_path = '/kaggle/working/output_video.mp4'
|
254 |
-
|
255 |
-
frames_to_video(frame_folder, video_output_path, video_info)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|