supersolar commited on
Commit
822eed4
·
verified ·
1 Parent(s): 515e482

Update 1.py

Browse files
Files changed (1) hide show
  1. 1.py +12 -25
1.py CHANGED
@@ -1,4 +1,4 @@
1
- #%cd /workspace/tem/florence-sam
2
  import os
3
  from typing import Tuple, Optional
4
  import shutil
@@ -13,8 +13,8 @@ from tqdm import tqdm
13
  import sys
14
  import json
15
  import pickle
16
- os.chdir("/workspace/florence-sam-tencent")
17
- sys.path.append('/workspace/florence-sam-tencent')
18
  from utils.video import generate_unique_name, create_directory, delete_directory
19
  from utils.florence import load_florence_model, run_florence_inference, \
20
  FLORENCE_DETAILED_CAPTION_TASK, \
@@ -34,46 +34,33 @@ if torch.cuda.get_device_properties(0).major >= 8:
34
  FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
35
  SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE)
36
 
37
- with open('/workspace/tem/texts.pkl', 'rb') as file:
38
  texts = pickle.load(file)
39
  print(texts)
40
 
41
- with open('/workspace/tem/output_video.pkl', 'rb') as file:
42
  output_video = pickle.load(file)
43
  print(output_video)
44
 
45
  VIDEO_SCALE_FACTOR = 1
46
- VIDEO_TARGET_DIRECTORY = "/workspace/tem/"
47
  create_directory(directory_path=VIDEO_TARGET_DIRECTORY)
48
 
49
 
50
  video_input= output_video
51
- texts = ['the table', 'men','ball']
52
- #VIDEO_TARGET_DIRECTORY = "/workspace/tem/"
 
53
  if not video_input:
54
  print("Please upload a video.")
55
- '''
56
  frame_generator = sv.get_video_frames_generator(video_input)
57
  frame = next(frame_generator)
58
  frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
59
- '''
60
-
61
 
62
- frame_generator = sv.get_video_frames_generator(video_input)
63
 
64
- # 获取视频的总帧数
65
- total_frames = int(sv.get_total_frames(video_input))
66
 
67
- # 计算中间帧的位置
68
- middle_frame_index = total_frames // 2
69
- with open('/workspace/tem//middle_frame_index.pkl', 'wb') as file:
70
- pickle.dump(middle_frame_index, file)
71
- # 读取到中间帧
72
- for _ in range(middle_frame_index):
73
- frame = next(frame_generator)
74
 
75
- # 将帧从 BGR 转换为 RGB 并保存到 PIL 图像对象
76
- frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
77
 
78
  detections_list = []
79
  width, height = frame.size
@@ -130,7 +117,7 @@ for text in texts:
130
  ok_result.append(new_result)
131
 
132
  print(ok_result)
133
- with open('/workspace/tem/all_ok_bboxes.pkl', 'wb') as file:
134
  pickle.dump(all_ok_bboxes, file)
135
 
136
  for xyxy in ok_result:
@@ -143,6 +130,6 @@ for xyxy in ok_result:
143
  detections = run_sam_inference(SAM_IMAGE_MODEL, frame, detections)
144
  print(detections)
145
  detections_list.append(detections)
146
- with open('/workspace/tem/detections_list.pkl', 'wb') as file:
147
  pickle.dump(detections_list, file)
148
  print(detections_list)
 
1
+ #%cd /workspace/florence-samflorence-sam
2
  import os
3
  from typing import Tuple, Optional
4
  import shutil
 
13
  import sys
14
  import json
15
  import pickle
16
+ os.chdir("/workspace/florence-sam")
17
+ sys.path.append('/workspace/florence-sam')
18
  from utils.video import generate_unique_name, create_directory, delete_directory
19
  from utils.florence import load_florence_model, run_florence_inference, \
20
  FLORENCE_DETAILED_CAPTION_TASK, \
 
34
  FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
35
  SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE)
36
 
37
+ with open('/workspace/florence-sam/texts.pkl', 'rb') as file:
38
  texts = pickle.load(file)
39
  print(texts)
40
 
41
+ with open('/workspace/florence-sam/output_video.pkl', 'rb') as file:
42
  output_video = pickle.load(file)
43
  print(output_video)
44
 
45
  VIDEO_SCALE_FACTOR = 1
46
+ VIDEO_TARGET_DIRECTORY = "/workspace/florence-sam"
47
  create_directory(directory_path=VIDEO_TARGET_DIRECTORY)
48
 
49
 
50
  video_input= output_video
51
+ texts = ['men','the table']
52
+ #texts = ['men']
53
+ #VIDEO_TARGET_DIRECTORY = "/workspace/florence-sam"
54
  if not video_input:
55
  print("Please upload a video.")
56
+
57
  frame_generator = sv.get_video_frames_generator(video_input)
58
  frame = next(frame_generator)
59
  frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
 
 
60
 
 
61
 
 
 
62
 
 
 
 
 
 
 
 
63
 
 
 
64
 
65
  detections_list = []
66
  width, height = frame.size
 
117
  ok_result.append(new_result)
118
 
119
  print(ok_result)
120
+ with open('/workspace/florence-sam/all_ok_bboxes.pkl', 'wb') as file:
121
  pickle.dump(all_ok_bboxes, file)
122
 
123
  for xyxy in ok_result:
 
130
  detections = run_sam_inference(SAM_IMAGE_MODEL, frame, detections)
131
  print(detections)
132
  detections_list.append(detections)
133
+ with open('/workspace/florence-sam/detections_list.pkl', 'wb') as file:
134
  pickle.dump(detections_list, file)
135
  print(detections_list)