Spaces:
Sleeping
Sleeping
Delete app/search_engine.py
Browse files- app/search_engine.py +0 -54
app/search_engine.py
DELETED
@@ -1,54 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
from typing import List, Tuple
|
3 |
-
|
4 |
-
from .similarity import cosine_similarity
|
5 |
-
from .vectorizer import Vectorizer
|
6 |
-
import logging
|
7 |
-
|
8 |
-
# Configure logging
|
9 |
-
logging.basicConfig(level=logging.INFO)
|
10 |
-
logger = logging.getLogger(__name__)
|
11 |
-
|
12 |
-
|
13 |
-
class PromptSearchEngine:
|
14 |
-
def __init__(self):
|
15 |
-
self.vectorizer = Vectorizer(init_pinecone=False)
|
16 |
-
self.vectorizer._data_loaded = True
|
17 |
-
self.prompts = self.vectorizer.prompts
|
18 |
-
self.corpus_vectors = self.vectorizer.transform(self.prompts)
|
19 |
-
self.index_name = self.vectorizer.pinecone_index_name
|
20 |
-
|
21 |
-
def most_similar(self, query: str, n: int = 5, use_pinecone=True) -> List[Tuple[float, str]]:
|
22 |
-
logger.info(f"Encoding query: {query}")
|
23 |
-
query_vector = self.vectorizer.transform([query])[0]
|
24 |
-
logger.info(f"Encoded query vector: {query_vector}")
|
25 |
-
if use_pinecone:
|
26 |
-
logger.info(f"I'm doing pinecone vector search because the use_pinecone is: {use_pinecone}")
|
27 |
-
try:
|
28 |
-
# Convert numpy array to list of native Python floats
|
29 |
-
query_vector_list = query_vector.tolist()
|
30 |
-
search_result = self.vectorizer.index.query(
|
31 |
-
vector=query_vector_list,
|
32 |
-
top_k=n,
|
33 |
-
include_metadata=True
|
34 |
-
)
|
35 |
-
logger.info(f"Search result: {search_result}")
|
36 |
-
|
37 |
-
# Retrieve and format the results
|
38 |
-
results = [(match['score'], match['metadata']['text']) for match in search_result['matches'] if
|
39 |
-
'text' in match['metadata']]
|
40 |
-
except Exception as e:
|
41 |
-
logger.error(f"Pinecone query failed: {e}")
|
42 |
-
logger.info("Falling back to cosine similarity search.")
|
43 |
-
|
44 |
-
# Fallback to cosine similarity search
|
45 |
-
similarities = cosine_similarity(query_vector, self.corpus_vectors)
|
46 |
-
top_n_indices = np.argsort(similarities)[-n:][::-1]
|
47 |
-
results = [(float(similarities[i]), self.prompts[i]) for i in top_n_indices]
|
48 |
-
else:
|
49 |
-
logger.info(f"I'm cosine similarity search because the use_pinecone is: {use_pinecone}")
|
50 |
-
logger.info("Using cosine similarity for search")
|
51 |
-
similarities = cosine_similarity(query_vector, self.corpus_vectors)
|
52 |
-
top_n_indices = np.argsort(similarities)[-n:][::-1]
|
53 |
-
results = [(float(similarities[i]), self.prompts[i]) for i in top_n_indices]
|
54 |
-
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|