Add code for RAG-powered Document Analyzer
Browse files- .gitignore +47 -0
- Dockerfile.txt +22 -0
- app(gradio).py +191 -0
- requirements.txt +9 -0
.gitignore
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
venv/
|
5 |
+
.env
|
6 |
+
|
7 |
+
# GPT4All models
|
8 |
+
*.bin
|
9 |
+
*.gguf
|
10 |
+
|
11 |
+
# Uploads
|
12 |
+
uploads/
|
13 |
+
|
14 |
+
# Logs
|
15 |
+
*.log
|
16 |
+
|
17 |
+
# Python
|
18 |
+
__pycache__/
|
19 |
+
*.py[cod]
|
20 |
+
*$py.class
|
21 |
+
*.so
|
22 |
+
.Python
|
23 |
+
env/
|
24 |
+
build/
|
25 |
+
develop-eggs/
|
26 |
+
dist/
|
27 |
+
downloads/
|
28 |
+
eggs/
|
29 |
+
.eggs/
|
30 |
+
lib/
|
31 |
+
lib64/
|
32 |
+
parts/
|
33 |
+
sdist/
|
34 |
+
var/
|
35 |
+
*.egg-info/
|
36 |
+
.installed.cfg
|
37 |
+
*.egg
|
38 |
+
|
39 |
+
# Virtual Environment
|
40 |
+
venv/
|
41 |
+
ENV/
|
42 |
+
|
43 |
+
# Application specific
|
44 |
+
uploads/
|
45 |
+
models/
|
46 |
+
*.log
|
47 |
+
.env
|
Dockerfile.txt
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use a lightweight Python base image
|
2 |
+
FROM python:3.10-slim
|
3 |
+
|
4 |
+
# Set environment variables
|
5 |
+
ENV PYTHONDONTWRITEBYTECODE 1
|
6 |
+
ENV PYTHONUNBUFFERED 1
|
7 |
+
|
8 |
+
# Set working directory
|
9 |
+
WORKDIR /code
|
10 |
+
|
11 |
+
# Copy files
|
12 |
+
COPY . /code/
|
13 |
+
|
14 |
+
# Install dependencies
|
15 |
+
RUN pip install --upgrade pip
|
16 |
+
RUN pip install -r requirements.txt
|
17 |
+
|
18 |
+
# Expose port
|
19 |
+
EXPOSE 7860
|
20 |
+
|
21 |
+
# Command to run the app
|
22 |
+
CMD ["python", "app.py"]
|
app(gradio).py
ADDED
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import logging
|
4 |
+
import math
|
5 |
+
import time
|
6 |
+
from datetime import datetime
|
7 |
+
from flask import Flask, render_template, request, jsonify, send_from_directory
|
8 |
+
from werkzeug.utils import secure_filename
|
9 |
+
import gradio as gr
|
10 |
+
from typing import List, Dict, Optional
|
11 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
12 |
+
from langchain_community.document_loaders import TextLoader, PyPDFLoader
|
13 |
+
from langchain_community.vectorstores import FAISS
|
14 |
+
from sentence_transformers import SentenceTransformer
|
15 |
+
from gpt4all import GPT4All
|
16 |
+
from transformers import pipeline
|
17 |
+
import huggingface_hub
|
18 |
+
|
19 |
+
# Ensure correct version of huggingface_hub is installed
|
20 |
+
try:
|
21 |
+
if huggingface_hub.__version__ != '0.16.4':
|
22 |
+
raise ImportError("Wrong huggingface-hub version")
|
23 |
+
except ImportError:
|
24 |
+
raise ImportError("Please install huggingface-hub==0.16.4")
|
25 |
+
|
26 |
+
# Initialize Flask app (optional, for custom routes)
|
27 |
+
app = Flask(__name__)
|
28 |
+
|
29 |
+
# Set environment variables
|
30 |
+
app.config['UPLOAD_FOLDER'] = 'uploads'
|
31 |
+
app.config['ALLOWED_EXTENSIONS'] = {'pdf', 'txt'}
|
32 |
+
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max upload size
|
33 |
+
os.makedirs(app.config['UPLOAD_FOLDER'], exist_ok=True)
|
34 |
+
|
35 |
+
# Initialize models
|
36 |
+
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
37 |
+
llm = pipeline("text-generation", model="tiiuae/falcon-7b-instruct", device=0)
|
38 |
+
|
39 |
+
# Initialize vector store
|
40 |
+
vector_store = None
|
41 |
+
|
42 |
+
# Configure logging
|
43 |
+
logging.basicConfig(
|
44 |
+
filename='agent.log',
|
45 |
+
level=logging.INFO,
|
46 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
47 |
+
)
|
48 |
+
|
49 |
+
# DocumentProcessor class
|
50 |
+
class DocumentProcessor:
|
51 |
+
@staticmethod
|
52 |
+
def allowed_file(filename: str) -> bool:
|
53 |
+
return '.' in filename and filename.rsplit('.', 1)[1].lower() in app.config['ALLOWED_EXTENSIONS']
|
54 |
+
|
55 |
+
@staticmethod
|
56 |
+
def load_and_process_documents(file_paths: List[str]) -> List[str]:
|
57 |
+
documents = []
|
58 |
+
for file_path in file_paths:
|
59 |
+
try:
|
60 |
+
if file_path.endswith('.pdf'):
|
61 |
+
loader = PyPDFLoader(file_path)
|
62 |
+
else:
|
63 |
+
loader = TextLoader(file_path)
|
64 |
+
documents.extend(loader.load())
|
65 |
+
except Exception as e:
|
66 |
+
logging.error(f"Error loading {file_path}: {str(e)}")
|
67 |
+
continue
|
68 |
+
|
69 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
70 |
+
chunk_size=1000,
|
71 |
+
chunk_overlap=200,
|
72 |
+
length_function=len,
|
73 |
+
separators=["\n\n", "\n", ".", " ", ""]
|
74 |
+
)
|
75 |
+
chunks = text_splitter.split_documents(documents)
|
76 |
+
return chunks
|
77 |
+
|
78 |
+
@staticmethod
|
79 |
+
def create_vector_store(chunks: List[str]) -> FAISS:
|
80 |
+
texts = [chunk.page_content for chunk in chunks]
|
81 |
+
embeddings = embedding_model.encode(texts, show_progress_bar=True)
|
82 |
+
|
83 |
+
global vector_store
|
84 |
+
vector_store = FAISS.from_embeddings(
|
85 |
+
text_embeddings=list(zip(texts, embeddings)),
|
86 |
+
embedding=embedding_model
|
87 |
+
)
|
88 |
+
return vector_store
|
89 |
+
|
90 |
+
# QueryProcessor class
|
91 |
+
class QueryProcessor:
|
92 |
+
@staticmethod
|
93 |
+
def retrieve_relevant_chunks(query: str, k: int = 3) -> List[str]:
|
94 |
+
if vector_store is None:
|
95 |
+
return []
|
96 |
+
|
97 |
+
query_embedding = embedding_model.encode([query])
|
98 |
+
docs = vector_store.similarity_search_by_vector(query_embedding[0], k=k)
|
99 |
+
return [doc.page_content for doc in docs]
|
100 |
+
|
101 |
+
@staticmethod
|
102 |
+
def generate_answer(query: str, context: str) -> str:
|
103 |
+
prompt = f"""You are a helpful AI assistant. Answer the question based on the context provided.
|
104 |
+
If the answer isn't in the context, say you don't know. Be concise but informative.
|
105 |
+
|
106 |
+
Context:
|
107 |
+
{context}
|
108 |
+
|
109 |
+
Question: {query}
|
110 |
+
Answer:"""
|
111 |
+
|
112 |
+
try:
|
113 |
+
response = llm.generate(prompt, max_tokens=1500, temp=0.7)
|
114 |
+
return response.strip()
|
115 |
+
except Exception as e:
|
116 |
+
logging.error(f"LLM generation error: {str(e)}")
|
117 |
+
return "I encountered an error while generating an answer."
|
118 |
+
|
119 |
+
@staticmethod
|
120 |
+
def calculate_expression(expression: str) -> str:
|
121 |
+
try:
|
122 |
+
safe_expr = re.sub(r'[^0-9+\-*/(). ]', '', expression)
|
123 |
+
result = eval(safe_expr, {'__builtins__': None}, {'math': math})
|
124 |
+
return str(result)
|
125 |
+
except Exception as e:
|
126 |
+
logging.error(f"Calculation error: {str(e)}")
|
127 |
+
return "I couldn't calculate that expression."
|
128 |
+
|
129 |
+
@staticmethod
|
130 |
+
def define_term(term: str) -> str:
|
131 |
+
definitions = {
|
132 |
+
"algorithm": "A set of rules or steps used to solve a problem or perform a computation.",
|
133 |
+
"api": "Application Programming Interface - a set of protocols for building and integrating software.",
|
134 |
+
"database": "An organized collection of structured information or data.",
|
135 |
+
"rag": "Retrieval-Augmented Generation - combines information retrieval with text generation.",
|
136 |
+
"llm": "Large Language Model - an AI model trained on vast amounts of text data."
|
137 |
+
}
|
138 |
+
return definitions.get(term.lower(), f"I don't have a definition for '{term}'.")
|
139 |
+
|
140 |
+
@staticmethod
|
141 |
+
def route_query(query: str) -> Dict:
|
142 |
+
logging.info(f"Routing query: {query}")
|
143 |
+
|
144 |
+
# Check for calculation requests
|
145 |
+
if any(word in query.lower() for word in ['calculate', 'compute', 'math', 'solve', 'what is']):
|
146 |
+
match = re.search(r'([\d+\-*/(). ]+)', query)
|
147 |
+
if match:
|
148 |
+
expression = match.group(1)
|
149 |
+
result = QueryProcessor.calculate_expression(expression)
|
150 |
+
logging.info(f"Used calculator for expression: {expression}")
|
151 |
+
return {
|
152 |
+
"tool": "calculator",
|
153 |
+
"result": result,
|
154 |
+
"context": None
|
155 |
+
}
|
156 |
+
|
157 |
+
# Check for definition requests
|
158 |
+
if any(word in query.lower() for word in ['define', 'definition', 'what is a']):
|
159 |
+
match = re.search(r'(?:define|what is a?) (.+?)(?:\?|$)', query.lower())
|
160 |
+
if match:
|
161 |
+
term = match.group(1)
|
162 |
+
result = QueryProcessor.define_term(term)
|
163 |
+
logging.info(f"Used dictionary for term: {term}")
|
164 |
+
return {
|
165 |
+
"tool": "dictionary",
|
166 |
+
"result": result,
|
167 |
+
"context": None
|
168 |
+
}
|
169 |
+
|
170 |
+
# Default to RAG pipeline
|
171 |
+
context_chunks = QueryProcessor.retrieve_relevant_chunks(query)
|
172 |
+
context = "\n\n".join(context_chunks) if context_chunks else "No relevant context found."
|
173 |
+
answer = QueryProcessor.generate_answer(query, context)
|
174 |
+
|
175 |
+
logging.info(f"Used RAG pipeline with {len(context_chunks)} context chunks")
|
176 |
+
return {
|
177 |
+
"tool": "RAG",
|
178 |
+
"result": answer,
|
179 |
+
"context": context_chunks
|
180 |
+
}
|
181 |
+
|
182 |
+
# Gradio interface
|
183 |
+
def query_function(query):
|
184 |
+
response = QueryProcessor.route_query(query)
|
185 |
+
return response['result']
|
186 |
+
|
187 |
+
# Gradio setup
|
188 |
+
interface = gr.Interface(fn=query_function, inputs="text", outputs="text", live=True)
|
189 |
+
|
190 |
+
if __name__ == '__main__':
|
191 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flask==2.3.2
|
2 |
+
sentence-transformers==2.2.2
|
3 |
+
faiss-cpu==1.7.4
|
4 |
+
langchain==0.0.346
|
5 |
+
PyPDF2==3.0.1
|
6 |
+
transformers
|
7 |
+
huggingface-hub==0.16.4
|
8 |
+
accelerate
|
9 |
+
numpy==1.24.3
|