File size: 14,542 Bytes
f003e69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c86f76
f003e69
9c86f76
 
 
 
 
 
 
f003e69
9c86f76
 
 
 
 
 
 
 
 
f003e69
 
 
 
 
 
 
1d2239a
 
 
 
 
 
f003e69
 
 
 
 
 
 
7df08f2
f003e69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7df08f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f003e69
 
 
 
 
36955d6
f003e69
36955d6
 
f003e69
 
36955d6
f003e69
36955d6
 
f003e69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7df08f2
f003e69
 
 
 
 
 
 
 
 
 
 
7df08f2
f003e69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc77879
f003e69
 
 
 
 
 
 
 
 
cc77879
f003e69
 
 
 
cc77879
f003e69
 
 
 
 
 
 
36955d6
 
f003e69
36955d6
 
f003e69
 
36955d6
f003e69
36955d6
 
f003e69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc77879
f003e69
 
 
cc77879
f003e69
 
 
 
 
 
e9b94b0
f003e69
 
 
 
 
 
 
cc77879
f003e69
 
 
cc77879
f003e69
 
 
 
 
 
 
 
 
cc77879
f003e69
 
 
 
 
 
cc77879
f003e69
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

import gradio as gr
import numpy as np
from PIL import Image
from transformers import AutoImageProcessor, AutoModel
import torch


import timm
import torch.nn.functional as F
from torchvision import transforms
import time


import subprocess
import os


from facenet_pytorch import MTCNN

mtcnn = MTCNN(keep_all=False)



def crop_face_to_112x112(image: Image.Image):
    if image.size == (112, 112):
        return image

    boxes, _ = mtcnn.detect(image)

    if boxes is None:
        raise ValueError("No face detected.")

    x1, y1, x2, y2 = map(int, boxes[0])
    cropped = image.crop((x1, y1, x2, y2))
    resized = cropped.resize((112, 112), Image.BILINEAR)
    return resized




SECURITYLEVELS = ["128", "196", "256"]

FRMODELS = ["gaunernst/vit_tiny_patch8_112.arcface_ms1mv3",
            "gaunernst/vit_tiny_patch8_112.cosface_ms1mv3"]
            # ,
            # "gaunernst/vit_tiny_patch8_112.adaface_ms1mv3",
            # "gaunernst/vit_small_patch8_gap_112.cosface_ms1mv3",
            # "gaunernst/convnext_nano.cosface_ms1mv3",
            # "gaunernst/convnext_atto.cosface_ms1mv3"]




def runBinFile(*args):
    binary_path = args[0]
    if not os.path.isfile(binary_path):
        return "Error: Compiled binary not Match."
    try:
        os.chmod(binary_path, 0o755)
        start = time.time()
        result = subprocess.run(
            list(args),
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            text=True
        )
        end = time.time()
        duration = (end - start) * 1000
        if 'print' in args:
            return result.stdout
        elif 'styledPrint' in args:
            return styled_output(result.stdout)
        elif result.returncode == 0:
            return True, f"<b>⏱️ Processing Time:</b> {duration:.0f} ms"
        else:
            return False
    except Exception as e:
        return f"Execution failed: {e}"


example_images = ['./VGGFace2/n000001/0002_01.jpg',
                  './VGGFace2/n000149/0002_01.jpg',
                  './VGGFace2/n000082/0001_02.jpg',
                  './VGGFace2/n000148/0014_01.jpg',
                  './VGGFace2/n000129/0001_01.jpg',
                  './VGGFace2/n000394/0007_01.jpg',
                  ]

example_images_auth = ['./VGGFace2/n000001/0013_01.jpg',
                        './VGGFace2/n000149/0019_01.jpg',
                        './VGGFace2/n000082/0003_03.jpg',
                        './VGGFace2/n000148/0043_01.jpg',
                        './VGGFace2/n000129/0006_01.jpg',
                        './VGGFace2/n000394/0018_01.jpg',
                        ]


def display_image(image):
    return image


def load_rec_image():
    return f'static/reconstructed.png'


def extract_emb(image, modelName=FRMODELS[0], mode=None): 
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.RandomHorizontalFlip(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
    ])
    image = transform(image)
    image = image.unsqueeze(0)

    model = timm.create_model(f"hf_hub:{modelName}", pretrained=True).eval()
    with torch.no_grad():
        embs = model(image)
        embs = F.normalize(embs, dim=1)
        embs = embs.detach().numpy()
        embs = embs.squeeze(0)
        if mode != None:
            np.savetxt(f'{mode}-emb.txt', embs.reshape(1, embs.shape[0]), fmt="%.6f", delimiter=',')
    return embs

def get_selected_image(evt: gr.SelectData):
    return example_images[evt.index]

def get_selected_image_auth(evt: gr.SelectData):
    return example_images_auth[evt.index]


def styled_output(result):
    if result.strip().lower() == "match":
        return "<span style='color: green; font-weight: bold;'>βœ”οΈ Match</span>"
    elif result.strip().lower() == "no match":
        return "<span style='color: red; font-weight: bold;'>❌ No Match</span>"
    else:
        return "<span style='color: red; font-weight: bold;'>Error</span>"


with gr.Blocks() as demo:
    gr.HTML(
        """
        <h1 align="center">Suraksh.AI</h1>
        <p align="center">
            <a href="https://suraksh-ai.vercel.app/"> https://suraksh-ai.vercel.app/</a>
        </p>       
        """
    )
    gr.Markdown("# Biometric verification (1:1 matching) Using Fully Homomorphic Encryption (FHE)")

    gr.HTML(
        """
        <p>This demo shows <strong>Suraksh.AI's</strong> biometric verification solution under <strong>FHE</strong>.</p>
        <ul>
        <li><strong>Scenario 1</strong>: Verifying an enrolled subject. For this scenario, the reference and probe should be from the same subject. Expected outcome: <span style='color: green; font-weight: bold;'>βœ”οΈ Match</span></li>
        <li><strong>Scenario 2</strong>: Verifying an enrolled subject with high recognition threshold. For this scenario, the reference and probe should be from the same subject and increase the recognition threshold. Expected outcome: <span style='color: red; font-weight: bold;'>❌ No Match</span></li>
        <li><strong>Scenario 3</strong>: Verifying a non-enrolled subject. For this scenario, choose a probe not enrolled. Expected outcome: <span style='color: red; font-weight: bold;'>❌ No Match</span></li>
        <li><strong>Scenario 4</strong>: Verifying a non-enrolled subject with low recognition threshold. For this scenario, choose a probe not enrolled and lower the recognition threshold. Expected outcome: <span style='color: green; font-weight: bold;'>βœ”οΈ Match</span></li>
        </ul>
        """
    )

    with gr.Row():
        gr.Markdown("## Phase 1: Enrollment")
    with gr.Row():
        gr.Markdown("### Step 1: Upload or select a reference facial image for enrollment.")  
    with gr.Row():
        image_input_enroll = gr.Image(type="pil", visible=False)
        with gr.Column():
            image_upload_enroll = gr.Image(label="Upload a reference facial image.", type="pil", sources="upload")
            image_upload_enroll.change(fn=crop_face_to_112x112, inputs=image_upload_enroll, outputs=image_input_enroll)
        with gr.Column():
            example_gallery = gr.Gallery(value=example_images, columns=3)
            example_gallery.select(fn=get_selected_image, inputs=None, outputs=image_input_enroll)
        with gr.Column():
            selectedImage = gr.Image(type="pil", label="Reference facial image", interactive=False)
            image_input_enroll.change(fn=lambda img: img, inputs=image_input_enroll, outputs=selectedImage)
            
    with gr.Row():
        gr.Markdown("### Step 2: Generate reference embedding.") 
    with gr.Row():
        with gr.Column():            
            modelName = gr.Dropdown(
                choices=FRMODELS, 
                label="Choose a face recognition model"
            )
        with gr.Column():
            example_gallery.select(fn=get_selected_image, inputs=None, outputs=image_input_enroll)
            key_button = gr.Button("Generate embedding")
            enroll_emb_text = gr.JSON(label="Reference embedding")
            mode = gr.State("enroll")
            key_button.click(fn=extract_emb, inputs=[image_input_enroll, modelName, mode], outputs=enroll_emb_text)


    with gr.Row():
        gr.Markdown("""Facial embeddings are **INVERTIBLE** and lead to the **RECONSTRUCTION** of their raw facial images.""")   
    with gr.Row():
        gr.Markdown("### Example:")   
    with gr.Row():
        original_image = gr.Image(value="static/original.jpg", label="Original", sources="upload")
        key_button = gr.Button("Generate embedding")
        output_text = gr.JSON(label="Target embedding")
        key_button.click(fn=extract_emb, inputs=[original_image, modelName], outputs=output_text)
        btn = gr.Button("Reconstruct facial image")
        Reconstructed_image = gr.Image(label="Reconstructed")        
        btn.click(fn=load_rec_image, outputs=Reconstructed_image)
    with gr.Row():
        gr.Markdown("""Facial embeddings protection is a must! At **Suraksh.AI**, we protect facial embeddings using FHE.""")


    
    with gr.Row():
        gr.Markdown("### Step 3: πŸ” Generate the FHE public and secret keys.")
    with gr.Row():
        with gr.Column():            
            securityLevel = gr.Dropdown(
                choices=SECURITYLEVELS, 
                label="Choose a security level"
            )
        with gr.Column():
            key_button = gr.Button("Generate the FHE public and secret keys")
            key_status = gr.Checkbox(label="FHE Public and Secret keys generated.", value=False)  
            time_output = gr.HTML()   
            key_button.click(fn=runBinFile, inputs=[gr.State("./bin/genKeys.bin"), securityLevel, gr.State("genkeys")], outputs=[key_status,time_output])
    

    with gr.Row():
        gr.Markdown("### Step 4: πŸ”’ Encrypt reference embedding using FHE.")
    with gr.Row():
        with gr.Column():
            key_button = gr.Button("Encrypt")
            key_status = gr.Checkbox(label="Reference embedding encrypted.", value=False) 
            time_output = gr.HTML()  
            key_button.click(fn=runBinFile, inputs=[gr.State("./bin/encReference.bin"), securityLevel, gr.State("encrypt")], outputs=[key_status,time_output])

        with gr.Column():
            key_button = gr.Button("Display")
            output_text = gr.Text(label="Encrypted embedding", lines=3, interactive=False)
            key_button.click(fn=runBinFile, inputs=[gr.State("./bin/encReference.bin"), securityLevel, gr.State("print")], outputs=output_text)


    with gr.Row():
        gr.Markdown("## Phase 2: Authentication")    
    with gr.Row():
        gr.Markdown("### Step 1: Upload or select a probe facial image for authentication.")  
    with gr.Row():
        selectedImagePath_auth = gr.State()
        image_input_auth = gr.Image(type="pil", visible=False)
        with gr.Column():
            image_upload_auth = gr.Image(label="Upload a facial image.", type="pil", sources="upload")
            image_upload_auth.change(fn=crop_face_to_112x112, inputs=image_upload_auth, outputs=image_input_auth)
        with gr.Column():
            example_gallery = gr.Gallery(value=example_images_auth, columns=3)
            example_gallery.select(fn=get_selected_image_auth, inputs=None, outputs=image_input_auth)
        with gr.Column():
            selectedImage = gr.Image(type="pil", label="Probe facial image", interactive=False)
            image_input_auth.change(fn=lambda img: img, inputs=image_input_auth, outputs=selectedImage)
    
    with gr.Row():
        gr.Markdown("### Step 2: Generate probe facial embedding.") 
    with gr.Row():
        with gr.Column():
            example_gallery.select(fn=get_selected_image_auth, inputs=None, outputs=image_input_auth)
            key_button = gr.Button("Generate embedding")
            enroll_emb_text = gr.JSON(label="Probe embedding")
            mode = gr.State("auth")
            key_button.click(fn=extract_emb, inputs=[image_input_auth, modelName, mode], outputs=enroll_emb_text)
    with gr.Row():
        gr.Markdown("### Step 3: πŸ”€ Generate protected probe embedding.")
    with gr.Row():
        with gr.Column():
            key_button = gr.Button("Protect")
            key_status = gr.Checkbox(label="Probe embedding protected.", value=False) 
            time_output = gr.HTML()
            key_button.click(fn=runBinFile, inputs=[gr.State("./bin/encProbe.bin"), securityLevel, gr.State("encrypt")], outputs=[key_status,time_output])
        with gr.Column():
            key_button = gr.Button("Display")
            output_text = gr.Text(label="Protected embedding", lines=3, interactive=False)
            key_button.click(fn=runBinFile, inputs=[gr.State("./bin/encProbe.bin"), securityLevel, gr.State("print")], outputs=output_text)
    
    with gr.Row():
        gr.Markdown("### Step 4: πŸ”’ Compute biometric recognition decision using the threshold under FHE.")
    with gr.Row():
        gr.Markdown("### Set the recognition threshold.")  
    with gr.Row():
        slider_threshold = gr.Slider(-512*5, 512*5, step=1, value=133, label="Decision threshold", info="The higher the stricter.", interactive=True)
        number_threshold = gr.Textbox(visible=False, value = '133')
        slider_threshold.change(fn=lambda x: x, inputs=slider_threshold, outputs=number_threshold)
    with gr.Row():
        with gr.Column():
            key_button = gr.Button("Biometric recognition under FHE")
            key_status = gr.Checkbox(label="Recognition decision encrypted.", value=False) 
            time_output = gr.HTML()
            key_button.click(fn=runBinFile, inputs=[gr.State("./bin/recDecision.bin"), securityLevel, gr.State("decision"), number_threshold], outputs=[key_status,time_output])
        with gr.Column():
            key_button = gr.Button("Display")
            output_text = gr.Text(label="Encrypted decision", lines=3, interactive=False)
            key_button.click(fn=runBinFile, inputs=[gr.State("./bin/recDecision.bin"), securityLevel, gr.State("print")], outputs=output_text)


    with gr.Row():
        gr.Markdown("### Step 5: πŸ”‘ Decrypt biometric recognition decision.")
    with gr.Row():
        with gr.Column(scale=1):
            decision_button = gr.Button("Decrypt")
            decision_status = gr.Checkbox(label="Recognition decision decrypted.", value=False) 
            time_output = gr.HTML()
            decision_button.click(fn=runBinFile, inputs=[gr.State("./bin/decDecision.bin"), securityLevel, gr.State("decision")], outputs=[decision_status, time_output])
        with gr.Column(scale=3): 
            with gr.Row():
                check_button = gr.Button("Check")
            with gr.Row():    
                with gr.Column(scale=1):                
                    final_output = gr.HTML()
                    check_button.click(fn=runBinFile, inputs=[gr.State("./bin/decDecision.bin"), securityLevel, gr.State("styledPrint")], outputs=final_output)
                with gr.Column(scale=1):
                    image_output_enroll = gr.Image(label="Reference", sources="upload")
                    image_input_enroll.change(fn=display_image, inputs=image_input_enroll, outputs=image_output_enroll)
                with gr.Column(scale=1):
                    image_output_auth = gr.Image(label="Probe", sources="upload")
                    image_input_auth.change(fn=display_image, inputs=image_input_auth, outputs=image_output_auth)
                


demo.launch()