File size: 14,542 Bytes
f003e69 9c86f76 f003e69 9c86f76 f003e69 9c86f76 f003e69 1d2239a f003e69 7df08f2 f003e69 7df08f2 f003e69 36955d6 f003e69 36955d6 f003e69 36955d6 f003e69 36955d6 f003e69 7df08f2 f003e69 7df08f2 f003e69 cc77879 f003e69 cc77879 f003e69 cc77879 f003e69 36955d6 f003e69 36955d6 f003e69 36955d6 f003e69 36955d6 f003e69 cc77879 f003e69 cc77879 f003e69 e9b94b0 f003e69 cc77879 f003e69 cc77879 f003e69 cc77879 f003e69 cc77879 f003e69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import gradio as gr
import numpy as np
from PIL import Image
from transformers import AutoImageProcessor, AutoModel
import torch
import timm
import torch.nn.functional as F
from torchvision import transforms
import time
import subprocess
import os
from facenet_pytorch import MTCNN
mtcnn = MTCNN(keep_all=False)
def crop_face_to_112x112(image: Image.Image):
if image.size == (112, 112):
return image
boxes, _ = mtcnn.detect(image)
if boxes is None:
raise ValueError("No face detected.")
x1, y1, x2, y2 = map(int, boxes[0])
cropped = image.crop((x1, y1, x2, y2))
resized = cropped.resize((112, 112), Image.BILINEAR)
return resized
SECURITYLEVELS = ["128", "196", "256"]
FRMODELS = ["gaunernst/vit_tiny_patch8_112.arcface_ms1mv3",
"gaunernst/vit_tiny_patch8_112.cosface_ms1mv3"]
# ,
# "gaunernst/vit_tiny_patch8_112.adaface_ms1mv3",
# "gaunernst/vit_small_patch8_gap_112.cosface_ms1mv3",
# "gaunernst/convnext_nano.cosface_ms1mv3",
# "gaunernst/convnext_atto.cosface_ms1mv3"]
def runBinFile(*args):
binary_path = args[0]
if not os.path.isfile(binary_path):
return "Error: Compiled binary not Match."
try:
os.chmod(binary_path, 0o755)
start = time.time()
result = subprocess.run(
list(args),
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
text=True
)
end = time.time()
duration = (end - start) * 1000
if 'print' in args:
return result.stdout
elif 'styledPrint' in args:
return styled_output(result.stdout)
elif result.returncode == 0:
return True, f"<b>β±οΈ Processing Time:</b> {duration:.0f} ms"
else:
return False
except Exception as e:
return f"Execution failed: {e}"
example_images = ['./VGGFace2/n000001/0002_01.jpg',
'./VGGFace2/n000149/0002_01.jpg',
'./VGGFace2/n000082/0001_02.jpg',
'./VGGFace2/n000148/0014_01.jpg',
'./VGGFace2/n000129/0001_01.jpg',
'./VGGFace2/n000394/0007_01.jpg',
]
example_images_auth = ['./VGGFace2/n000001/0013_01.jpg',
'./VGGFace2/n000149/0019_01.jpg',
'./VGGFace2/n000082/0003_03.jpg',
'./VGGFace2/n000148/0043_01.jpg',
'./VGGFace2/n000129/0006_01.jpg',
'./VGGFace2/n000394/0018_01.jpg',
]
def display_image(image):
return image
def load_rec_image():
return f'static/reconstructed.png'
def extract_emb(image, modelName=FRMODELS[0], mode=None):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.RandomHorizontalFlip(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
image = transform(image)
image = image.unsqueeze(0)
model = timm.create_model(f"hf_hub:{modelName}", pretrained=True).eval()
with torch.no_grad():
embs = model(image)
embs = F.normalize(embs, dim=1)
embs = embs.detach().numpy()
embs = embs.squeeze(0)
if mode != None:
np.savetxt(f'{mode}-emb.txt', embs.reshape(1, embs.shape[0]), fmt="%.6f", delimiter=',')
return embs
def get_selected_image(evt: gr.SelectData):
return example_images[evt.index]
def get_selected_image_auth(evt: gr.SelectData):
return example_images_auth[evt.index]
def styled_output(result):
if result.strip().lower() == "match":
return "<span style='color: green; font-weight: bold;'>βοΈ Match</span>"
elif result.strip().lower() == "no match":
return "<span style='color: red; font-weight: bold;'>β No Match</span>"
else:
return "<span style='color: red; font-weight: bold;'>Error</span>"
with gr.Blocks() as demo:
gr.HTML(
"""
<h1 align="center">Suraksh.AI</h1>
<p align="center">
<a href="https://suraksh-ai.vercel.app/"> https://suraksh-ai.vercel.app/</a>
</p>
"""
)
gr.Markdown("# Biometric verification (1:1 matching) Using Fully Homomorphic Encryption (FHE)")
gr.HTML(
"""
<p>This demo shows <strong>Suraksh.AI's</strong> biometric verification solution under <strong>FHE</strong>.</p>
<ul>
<li><strong>Scenario 1</strong>: Verifying an enrolled subject. For this scenario, the reference and probe should be from the same subject. Expected outcome: <span style='color: green; font-weight: bold;'>βοΈ Match</span></li>
<li><strong>Scenario 2</strong>: Verifying an enrolled subject with high recognition threshold. For this scenario, the reference and probe should be from the same subject and increase the recognition threshold. Expected outcome: <span style='color: red; font-weight: bold;'>β No Match</span></li>
<li><strong>Scenario 3</strong>: Verifying a non-enrolled subject. For this scenario, choose a probe not enrolled. Expected outcome: <span style='color: red; font-weight: bold;'>β No Match</span></li>
<li><strong>Scenario 4</strong>: Verifying a non-enrolled subject with low recognition threshold. For this scenario, choose a probe not enrolled and lower the recognition threshold. Expected outcome: <span style='color: green; font-weight: bold;'>βοΈ Match</span></li>
</ul>
"""
)
with gr.Row():
gr.Markdown("## Phase 1: Enrollment")
with gr.Row():
gr.Markdown("### Step 1: Upload or select a reference facial image for enrollment.")
with gr.Row():
image_input_enroll = gr.Image(type="pil", visible=False)
with gr.Column():
image_upload_enroll = gr.Image(label="Upload a reference facial image.", type="pil", sources="upload")
image_upload_enroll.change(fn=crop_face_to_112x112, inputs=image_upload_enroll, outputs=image_input_enroll)
with gr.Column():
example_gallery = gr.Gallery(value=example_images, columns=3)
example_gallery.select(fn=get_selected_image, inputs=None, outputs=image_input_enroll)
with gr.Column():
selectedImage = gr.Image(type="pil", label="Reference facial image", interactive=False)
image_input_enroll.change(fn=lambda img: img, inputs=image_input_enroll, outputs=selectedImage)
with gr.Row():
gr.Markdown("### Step 2: Generate reference embedding.")
with gr.Row():
with gr.Column():
modelName = gr.Dropdown(
choices=FRMODELS,
label="Choose a face recognition model"
)
with gr.Column():
example_gallery.select(fn=get_selected_image, inputs=None, outputs=image_input_enroll)
key_button = gr.Button("Generate embedding")
enroll_emb_text = gr.JSON(label="Reference embedding")
mode = gr.State("enroll")
key_button.click(fn=extract_emb, inputs=[image_input_enroll, modelName, mode], outputs=enroll_emb_text)
with gr.Row():
gr.Markdown("""Facial embeddings are **INVERTIBLE** and lead to the **RECONSTRUCTION** of their raw facial images.""")
with gr.Row():
gr.Markdown("### Example:")
with gr.Row():
original_image = gr.Image(value="static/original.jpg", label="Original", sources="upload")
key_button = gr.Button("Generate embedding")
output_text = gr.JSON(label="Target embedding")
key_button.click(fn=extract_emb, inputs=[original_image, modelName], outputs=output_text)
btn = gr.Button("Reconstruct facial image")
Reconstructed_image = gr.Image(label="Reconstructed")
btn.click(fn=load_rec_image, outputs=Reconstructed_image)
with gr.Row():
gr.Markdown("""Facial embeddings protection is a must! At **Suraksh.AI**, we protect facial embeddings using FHE.""")
with gr.Row():
gr.Markdown("### Step 3: π Generate the FHE public and secret keys.")
with gr.Row():
with gr.Column():
securityLevel = gr.Dropdown(
choices=SECURITYLEVELS,
label="Choose a security level"
)
with gr.Column():
key_button = gr.Button("Generate the FHE public and secret keys")
key_status = gr.Checkbox(label="FHE Public and Secret keys generated.", value=False)
time_output = gr.HTML()
key_button.click(fn=runBinFile, inputs=[gr.State("./bin/genKeys.bin"), securityLevel, gr.State("genkeys")], outputs=[key_status,time_output])
with gr.Row():
gr.Markdown("### Step 4: π Encrypt reference embedding using FHE.")
with gr.Row():
with gr.Column():
key_button = gr.Button("Encrypt")
key_status = gr.Checkbox(label="Reference embedding encrypted.", value=False)
time_output = gr.HTML()
key_button.click(fn=runBinFile, inputs=[gr.State("./bin/encReference.bin"), securityLevel, gr.State("encrypt")], outputs=[key_status,time_output])
with gr.Column():
key_button = gr.Button("Display")
output_text = gr.Text(label="Encrypted embedding", lines=3, interactive=False)
key_button.click(fn=runBinFile, inputs=[gr.State("./bin/encReference.bin"), securityLevel, gr.State("print")], outputs=output_text)
with gr.Row():
gr.Markdown("## Phase 2: Authentication")
with gr.Row():
gr.Markdown("### Step 1: Upload or select a probe facial image for authentication.")
with gr.Row():
selectedImagePath_auth = gr.State()
image_input_auth = gr.Image(type="pil", visible=False)
with gr.Column():
image_upload_auth = gr.Image(label="Upload a facial image.", type="pil", sources="upload")
image_upload_auth.change(fn=crop_face_to_112x112, inputs=image_upload_auth, outputs=image_input_auth)
with gr.Column():
example_gallery = gr.Gallery(value=example_images_auth, columns=3)
example_gallery.select(fn=get_selected_image_auth, inputs=None, outputs=image_input_auth)
with gr.Column():
selectedImage = gr.Image(type="pil", label="Probe facial image", interactive=False)
image_input_auth.change(fn=lambda img: img, inputs=image_input_auth, outputs=selectedImage)
with gr.Row():
gr.Markdown("### Step 2: Generate probe facial embedding.")
with gr.Row():
with gr.Column():
example_gallery.select(fn=get_selected_image_auth, inputs=None, outputs=image_input_auth)
key_button = gr.Button("Generate embedding")
enroll_emb_text = gr.JSON(label="Probe embedding")
mode = gr.State("auth")
key_button.click(fn=extract_emb, inputs=[image_input_auth, modelName, mode], outputs=enroll_emb_text)
with gr.Row():
gr.Markdown("### Step 3: π Generate protected probe embedding.")
with gr.Row():
with gr.Column():
key_button = gr.Button("Protect")
key_status = gr.Checkbox(label="Probe embedding protected.", value=False)
time_output = gr.HTML()
key_button.click(fn=runBinFile, inputs=[gr.State("./bin/encProbe.bin"), securityLevel, gr.State("encrypt")], outputs=[key_status,time_output])
with gr.Column():
key_button = gr.Button("Display")
output_text = gr.Text(label="Protected embedding", lines=3, interactive=False)
key_button.click(fn=runBinFile, inputs=[gr.State("./bin/encProbe.bin"), securityLevel, gr.State("print")], outputs=output_text)
with gr.Row():
gr.Markdown("### Step 4: π Compute biometric recognition decision using the threshold under FHE.")
with gr.Row():
gr.Markdown("### Set the recognition threshold.")
with gr.Row():
slider_threshold = gr.Slider(-512*5, 512*5, step=1, value=133, label="Decision threshold", info="The higher the stricter.", interactive=True)
number_threshold = gr.Textbox(visible=False, value = '133')
slider_threshold.change(fn=lambda x: x, inputs=slider_threshold, outputs=number_threshold)
with gr.Row():
with gr.Column():
key_button = gr.Button("Biometric recognition under FHE")
key_status = gr.Checkbox(label="Recognition decision encrypted.", value=False)
time_output = gr.HTML()
key_button.click(fn=runBinFile, inputs=[gr.State("./bin/recDecision.bin"), securityLevel, gr.State("decision"), number_threshold], outputs=[key_status,time_output])
with gr.Column():
key_button = gr.Button("Display")
output_text = gr.Text(label="Encrypted decision", lines=3, interactive=False)
key_button.click(fn=runBinFile, inputs=[gr.State("./bin/recDecision.bin"), securityLevel, gr.State("print")], outputs=output_text)
with gr.Row():
gr.Markdown("### Step 5: π Decrypt biometric recognition decision.")
with gr.Row():
with gr.Column(scale=1):
decision_button = gr.Button("Decrypt")
decision_status = gr.Checkbox(label="Recognition decision decrypted.", value=False)
time_output = gr.HTML()
decision_button.click(fn=runBinFile, inputs=[gr.State("./bin/decDecision.bin"), securityLevel, gr.State("decision")], outputs=[decision_status, time_output])
with gr.Column(scale=3):
with gr.Row():
check_button = gr.Button("Check")
with gr.Row():
with gr.Column(scale=1):
final_output = gr.HTML()
check_button.click(fn=runBinFile, inputs=[gr.State("./bin/decDecision.bin"), securityLevel, gr.State("styledPrint")], outputs=final_output)
with gr.Column(scale=1):
image_output_enroll = gr.Image(label="Reference", sources="upload")
image_input_enroll.change(fn=display_image, inputs=image_input_enroll, outputs=image_output_enroll)
with gr.Column(scale=1):
image_output_auth = gr.Image(label="Probe", sources="upload")
image_input_auth.change(fn=display_image, inputs=image_input_auth, outputs=image_output_auth)
demo.launch()
|